Cargando…
External Validation of an Algorithm to Identify Patients with High Data-Completeness in Electronic Health Records for Comparative Effectiveness Research
OBJECTIVE: Electronic health records (EHR) data-discontinuity, i.e. receiving care outside of a particular EHR system, may cause misclassification of study variables. We aimed to validate an algorithm to identify patients with high EHR data-continuity to reduce such bias. MATERIALS AND METHODS: We a...
Autores principales: | Lin, Kueiyu Joshua, Rosenthal, Gary E, Murphy, Shawn N, Mandl, Kenneth D, Jin, Yinzhu, Glynn, Robert J, Schneeweiss, Sebastian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007793/ https://www.ncbi.nlm.nih.gov/pubmed/32099479 http://dx.doi.org/10.2147/CLEP.S232540 |
Ejemplares similares
-
Advancing an Algorithm for the Identification of Patients with High Data-Continuity in Electronic Health Records
por: Merola, David, et al.
Publicado: (2022) -
Claims‐Based Algorithms for Identifying Patients With Pulmonary Hypertension: A Comparison of Decision Rules and Machine‐Learning Approaches
por: Ong, Mei‐Sing, et al.
Publicado: (2020) -
Oncology Drug Effectiveness from Electronic Health Record Data Calibrated Against RCT Evidence: The PARSIFAL Trial Emulation
por: Merola, David, et al.
Publicado: (2022) -
The impact of electronic health record discontinuity on prediction modeling
por: Kar, Shreyas, et al.
Publicado: (2023) -
A Novel Chronic Kidney Disease Phenotyping Algorithm Using Combined Electronic Health Record and Claims Data
por: Mansour, Omar, et al.
Publicado: (2023)