Cargando…

Effect of emotional enhancement of memory on recollection process in young adults: the influence factors and neural mechanisms

Emotional enhancement of memory (EEM) is thought to modulate memory recollection rather than familiarity. However, the contributing factors and neural mechanisms are not well understood. To address these issues, we investigated how valence, arousal, and the amount of devoted attention influence the...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xiaoshu, Li, Xiaohu, Chen, Shujuan, Zhu, Jiajia, Wang, Haibao, Tian, Yanghua, Yu, Yongqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007901/
https://www.ncbi.nlm.nih.gov/pubmed/30361944
http://dx.doi.org/10.1007/s11682-018-9975-0
Descripción
Sumario:Emotional enhancement of memory (EEM) is thought to modulate memory recollection rather than familiarity. However, the contributing factors and neural mechanisms are not well understood. To address these issues, we investigated how valence, arousal, and the amount of devoted attention influence the EEM effect on recollection. We also compared the topological properties among hippocampus- and perirhinal and entorhinal cortex-mediated emotional memory processing networks. Finally, we evaluated the correlations between emotional memory/EEM and inherent properties (i.e., amplitude of low-frequency fluctuation and node degree, efficiency, and betweenness) of the hippocampus and perirhinal and entorhinal cortices in 59 healthy young adults by resting-state functional magnetic resonance imaging. EEM was elicited by incidental encoding, negative images, and positive high-arousal images. The hippocampus was correlated with recollection sensitivity and EEM(negative-high-arousal). The emotional memory processing network mediated by the hippocampus had higher clustering coefficient, local efficiency, and normalized characteristic path length but lower normalized global efficiency than those mediated by the perirhinal and entorhinal cortices. The entorhinal cortex was associated with both recollection and familiarity sensitivity, but showed different correlation patterns. The perirhinal cortex was highly correlated with familiarity sensitivity of negative low-arousal stimuli. These results demonstrate that the EEM effect on memory recollection is influenced by valence, stimulus arousal, and amount of attention involved during encoding. Moreover, the hippocampus and perirhinal and entorhinal cortices play distinct roles in the recollection and familiarity of emotional memory and the EEM effect.