Cargando…
A large peptidome dataset improves HLA class I epitope prediction across most of the human population
Prediction of HLA epitopes is important for the development of cancer immunotherapies and vaccines. However, current prediction algorithms have limited predictive power, in part because they were not trained on high-quality epitope datasets covering a broad range of HLA alleles. To enable prediction...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008090/ https://www.ncbi.nlm.nih.gov/pubmed/31844290 http://dx.doi.org/10.1038/s41587-019-0322-9 |
_version_ | 1783495414166585344 |
---|---|
author | Sarkizova, Siranush Klaeger, Susan Le, Phuong M. Li, Letitia W. Oliveira, Giacomo Keshishian, Hasmik Hartigan, Christina R. Zhang, Wandi Braun, David A. Ligon, Keith L. Bachireddy, Pavan Zervantonakis, Ioannis K. Rosenbluth, Jennifer M. Ouspenskaia, Tamara Law, Travis Justesen, Sune Stevens, Jonathan Lane, William J. Eisenhaure, Thomas Zhang, Guang Lan Clauser, Karl R. Hacohen, Nir Carr, Steven A. Wu, Catherine J. Keskin, Derin B. |
author_facet | Sarkizova, Siranush Klaeger, Susan Le, Phuong M. Li, Letitia W. Oliveira, Giacomo Keshishian, Hasmik Hartigan, Christina R. Zhang, Wandi Braun, David A. Ligon, Keith L. Bachireddy, Pavan Zervantonakis, Ioannis K. Rosenbluth, Jennifer M. Ouspenskaia, Tamara Law, Travis Justesen, Sune Stevens, Jonathan Lane, William J. Eisenhaure, Thomas Zhang, Guang Lan Clauser, Karl R. Hacohen, Nir Carr, Steven A. Wu, Catherine J. Keskin, Derin B. |
author_sort | Sarkizova, Siranush |
collection | PubMed |
description | Prediction of HLA epitopes is important for the development of cancer immunotherapies and vaccines. However, current prediction algorithms have limited predictive power, in part because they were not trained on high-quality epitope datasets covering a broad range of HLA alleles. To enable prediction of endogenous HLA class I–associated peptides across a large fraction of the human population, we used mass spectrometry to profile >185,000 peptides eluted from 95 HLA-A, B, C and G mono-allelic cell lines. We identified canonical peptide motifs per HLA allele, unique and shared binding submotifs across alleles, and distinct motifs associated with different peptide lengths. By integrating these data with transcript abundance and peptide processing, we developed HLAthena, providing allele-and-length-specific and pan-allele-pan-length prediction models for endogenous peptide presentation. These models predicted endogenous HLA class I–associated ligands with 1.5-fold improvement in positive predictive value compared with existing tools and correctly identified >75% of HLA-bound peptides that were observed experimentally in 11 patient-derived tumor cell lines. |
format | Online Article Text |
id | pubmed-7008090 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-70080902020-06-16 A large peptidome dataset improves HLA class I epitope prediction across most of the human population Sarkizova, Siranush Klaeger, Susan Le, Phuong M. Li, Letitia W. Oliveira, Giacomo Keshishian, Hasmik Hartigan, Christina R. Zhang, Wandi Braun, David A. Ligon, Keith L. Bachireddy, Pavan Zervantonakis, Ioannis K. Rosenbluth, Jennifer M. Ouspenskaia, Tamara Law, Travis Justesen, Sune Stevens, Jonathan Lane, William J. Eisenhaure, Thomas Zhang, Guang Lan Clauser, Karl R. Hacohen, Nir Carr, Steven A. Wu, Catherine J. Keskin, Derin B. Nat Biotechnol Article Prediction of HLA epitopes is important for the development of cancer immunotherapies and vaccines. However, current prediction algorithms have limited predictive power, in part because they were not trained on high-quality epitope datasets covering a broad range of HLA alleles. To enable prediction of endogenous HLA class I–associated peptides across a large fraction of the human population, we used mass spectrometry to profile >185,000 peptides eluted from 95 HLA-A, B, C and G mono-allelic cell lines. We identified canonical peptide motifs per HLA allele, unique and shared binding submotifs across alleles, and distinct motifs associated with different peptide lengths. By integrating these data with transcript abundance and peptide processing, we developed HLAthena, providing allele-and-length-specific and pan-allele-pan-length prediction models for endogenous peptide presentation. These models predicted endogenous HLA class I–associated ligands with 1.5-fold improvement in positive predictive value compared with existing tools and correctly identified >75% of HLA-bound peptides that were observed experimentally in 11 patient-derived tumor cell lines. 2019-12-16 2020-02 /pmc/articles/PMC7008090/ /pubmed/31844290 http://dx.doi.org/10.1038/s41587-019-0322-9 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms Reprints and permissions information is available at www.nature.com/reprints (http://www.nature.com/reprints) . |
spellingShingle | Article Sarkizova, Siranush Klaeger, Susan Le, Phuong M. Li, Letitia W. Oliveira, Giacomo Keshishian, Hasmik Hartigan, Christina R. Zhang, Wandi Braun, David A. Ligon, Keith L. Bachireddy, Pavan Zervantonakis, Ioannis K. Rosenbluth, Jennifer M. Ouspenskaia, Tamara Law, Travis Justesen, Sune Stevens, Jonathan Lane, William J. Eisenhaure, Thomas Zhang, Guang Lan Clauser, Karl R. Hacohen, Nir Carr, Steven A. Wu, Catherine J. Keskin, Derin B. A large peptidome dataset improves HLA class I epitope prediction across most of the human population |
title | A large peptidome dataset improves HLA class I epitope prediction across most of the human population |
title_full | A large peptidome dataset improves HLA class I epitope prediction across most of the human population |
title_fullStr | A large peptidome dataset improves HLA class I epitope prediction across most of the human population |
title_full_unstemmed | A large peptidome dataset improves HLA class I epitope prediction across most of the human population |
title_short | A large peptidome dataset improves HLA class I epitope prediction across most of the human population |
title_sort | large peptidome dataset improves hla class i epitope prediction across most of the human population |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008090/ https://www.ncbi.nlm.nih.gov/pubmed/31844290 http://dx.doi.org/10.1038/s41587-019-0322-9 |
work_keys_str_mv | AT sarkizovasiranush alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT klaegersusan alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT lephuongm alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT liletitiaw alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT oliveiragiacomo alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT keshishianhasmik alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT hartiganchristinar alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT zhangwandi alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT braundavida alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT ligonkeithl alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT bachireddypavan alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT zervantonakisioannisk alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT rosenbluthjenniferm alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT ouspenskaiatamara alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT lawtravis alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT justesensune alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT stevensjonathan alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT lanewilliamj alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT eisenhaurethomas alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT zhangguanglan alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT clauserkarlr alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT hacohennir alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT carrstevena alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT wucatherinej alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT keskinderinb alargepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT sarkizovasiranush largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT klaegersusan largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT lephuongm largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT liletitiaw largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT oliveiragiacomo largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT keshishianhasmik largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT hartiganchristinar largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT zhangwandi largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT braundavida largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT ligonkeithl largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT bachireddypavan largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT zervantonakisioannisk largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT rosenbluthjenniferm largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT ouspenskaiatamara largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT lawtravis largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT justesensune largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT stevensjonathan largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT lanewilliamj largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT eisenhaurethomas largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT zhangguanglan largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT clauserkarlr largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT hacohennir largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT carrstevena largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT wucatherinej largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation AT keskinderinb largepeptidomedatasetimproveshlaclassiepitopepredictionacrossmostofthehumanpopulation |