Cargando…

Multi-band SWIFT enables quiet and artefact-free EEG-fMRI and awake fMRI studies in rat

Functional magnetic resonance imaging (fMRI) studies in animal models provide invaluable information regarding normal and abnormal brain function, especially when combined with complementary stimulation and recording techniques. The echo planar imaging (EPI) pulse sequence is the most common choice...

Descripción completa

Detalles Bibliográficos
Autores principales: Paasonen, Jaakko, Laakso, Hanne, Pirttimäki, Tiina, Stenroos, Petteri, Salo, Raimo A., Zhurakovskaya, Ekaterina, Lehto, Lauri J., Tanila, Heikki, Garwood, Michael, Michaeli, Shalom, Idiyatullin, Djaudat, Mangia, Silvia, Gröhn, Olli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008094/
https://www.ncbi.nlm.nih.gov/pubmed/31730923
http://dx.doi.org/10.1016/j.neuroimage.2019.116338
_version_ 1783495414642638848
author Paasonen, Jaakko
Laakso, Hanne
Pirttimäki, Tiina
Stenroos, Petteri
Salo, Raimo A.
Zhurakovskaya, Ekaterina
Lehto, Lauri J.
Tanila, Heikki
Garwood, Michael
Michaeli, Shalom
Idiyatullin, Djaudat
Mangia, Silvia
Gröhn, Olli
author_facet Paasonen, Jaakko
Laakso, Hanne
Pirttimäki, Tiina
Stenroos, Petteri
Salo, Raimo A.
Zhurakovskaya, Ekaterina
Lehto, Lauri J.
Tanila, Heikki
Garwood, Michael
Michaeli, Shalom
Idiyatullin, Djaudat
Mangia, Silvia
Gröhn, Olli
author_sort Paasonen, Jaakko
collection PubMed
description Functional magnetic resonance imaging (fMRI) studies in animal models provide invaluable information regarding normal and abnormal brain function, especially when combined with complementary stimulation and recording techniques. The echo planar imaging (EPI) pulse sequence is the most common choice for fMRI investigations, but it has several shortcomings. EPI is one of the loudest sequences and very prone to movement and susceptibility-induced artefacts, making it suboptimal for awake imaging. Additionally, the fast gradient-switching of EPI induces disrupting currents in simultaneous electrophysiological recordings. Therefore, we investigated whether the unique features of Multi-Band SWeep Imaging with Fourier Transformation (MB-SWIFT) overcome these issues at a high 9.4 T magnetic field, making it a potential alternative to EPI. MB-SWIFT had 32-dB and 20-dB lower peak and average sound pressure levels, respectively, than EPI with typical fMRI parameters. Body movements had little to no effect on MB-SWIFT images or functional connectivity analyses, whereas they severely affected EPI data. The minimal gradient steps of MB-SWIFT induced significantly lower currents in simultaneous electrophysiological recordings than EPI, and there were no electrode-induced distortions in MB-SWIFT images. An independent component analysis of the awake rat functional connectivity data obtained with MB-SWIFT resulted in near whole-brain level functional parcellation, and simultaneous electrophysiological and fMRI measurements in isoflurane-anesthetized rats indicated that MB-SWIFT signal is tightly linked to neuronal resting-state activity. Therefore, we conclude that the MB-SWIFT sequence is a robust preclinical brain mapping tool that can overcome many of the drawbacks of conventional EPI fMRI at high magnetic fields.
format Online
Article
Text
id pubmed-7008094
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-70080942020-02-10 Multi-band SWIFT enables quiet and artefact-free EEG-fMRI and awake fMRI studies in rat Paasonen, Jaakko Laakso, Hanne Pirttimäki, Tiina Stenroos, Petteri Salo, Raimo A. Zhurakovskaya, Ekaterina Lehto, Lauri J. Tanila, Heikki Garwood, Michael Michaeli, Shalom Idiyatullin, Djaudat Mangia, Silvia Gröhn, Olli Neuroimage Article Functional magnetic resonance imaging (fMRI) studies in animal models provide invaluable information regarding normal and abnormal brain function, especially when combined with complementary stimulation and recording techniques. The echo planar imaging (EPI) pulse sequence is the most common choice for fMRI investigations, but it has several shortcomings. EPI is one of the loudest sequences and very prone to movement and susceptibility-induced artefacts, making it suboptimal for awake imaging. Additionally, the fast gradient-switching of EPI induces disrupting currents in simultaneous electrophysiological recordings. Therefore, we investigated whether the unique features of Multi-Band SWeep Imaging with Fourier Transformation (MB-SWIFT) overcome these issues at a high 9.4 T magnetic field, making it a potential alternative to EPI. MB-SWIFT had 32-dB and 20-dB lower peak and average sound pressure levels, respectively, than EPI with typical fMRI parameters. Body movements had little to no effect on MB-SWIFT images or functional connectivity analyses, whereas they severely affected EPI data. The minimal gradient steps of MB-SWIFT induced significantly lower currents in simultaneous electrophysiological recordings than EPI, and there were no electrode-induced distortions in MB-SWIFT images. An independent component analysis of the awake rat functional connectivity data obtained with MB-SWIFT resulted in near whole-brain level functional parcellation, and simultaneous electrophysiological and fMRI measurements in isoflurane-anesthetized rats indicated that MB-SWIFT signal is tightly linked to neuronal resting-state activity. Therefore, we conclude that the MB-SWIFT sequence is a robust preclinical brain mapping tool that can overcome many of the drawbacks of conventional EPI fMRI at high magnetic fields. 2019-11-12 2020-02-01 /pmc/articles/PMC7008094/ /pubmed/31730923 http://dx.doi.org/10.1016/j.neuroimage.2019.116338 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Paasonen, Jaakko
Laakso, Hanne
Pirttimäki, Tiina
Stenroos, Petteri
Salo, Raimo A.
Zhurakovskaya, Ekaterina
Lehto, Lauri J.
Tanila, Heikki
Garwood, Michael
Michaeli, Shalom
Idiyatullin, Djaudat
Mangia, Silvia
Gröhn, Olli
Multi-band SWIFT enables quiet and artefact-free EEG-fMRI and awake fMRI studies in rat
title Multi-band SWIFT enables quiet and artefact-free EEG-fMRI and awake fMRI studies in rat
title_full Multi-band SWIFT enables quiet and artefact-free EEG-fMRI and awake fMRI studies in rat
title_fullStr Multi-band SWIFT enables quiet and artefact-free EEG-fMRI and awake fMRI studies in rat
title_full_unstemmed Multi-band SWIFT enables quiet and artefact-free EEG-fMRI and awake fMRI studies in rat
title_short Multi-band SWIFT enables quiet and artefact-free EEG-fMRI and awake fMRI studies in rat
title_sort multi-band swift enables quiet and artefact-free eeg-fmri and awake fmri studies in rat
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008094/
https://www.ncbi.nlm.nih.gov/pubmed/31730923
http://dx.doi.org/10.1016/j.neuroimage.2019.116338
work_keys_str_mv AT paasonenjaakko multibandswiftenablesquietandartefactfreeeegfmriandawakefmristudiesinrat
AT laaksohanne multibandswiftenablesquietandartefactfreeeegfmriandawakefmristudiesinrat
AT pirttimakitiina multibandswiftenablesquietandartefactfreeeegfmriandawakefmristudiesinrat
AT stenroospetteri multibandswiftenablesquietandartefactfreeeegfmriandawakefmristudiesinrat
AT saloraimoa multibandswiftenablesquietandartefactfreeeegfmriandawakefmristudiesinrat
AT zhurakovskayaekaterina multibandswiftenablesquietandartefactfreeeegfmriandawakefmristudiesinrat
AT lehtolaurij multibandswiftenablesquietandartefactfreeeegfmriandawakefmristudiesinrat
AT tanilaheikki multibandswiftenablesquietandartefactfreeeegfmriandawakefmristudiesinrat
AT garwoodmichael multibandswiftenablesquietandartefactfreeeegfmriandawakefmristudiesinrat
AT michaelishalom multibandswiftenablesquietandartefactfreeeegfmriandawakefmristudiesinrat
AT idiyatullindjaudat multibandswiftenablesquietandartefactfreeeegfmriandawakefmristudiesinrat
AT mangiasilvia multibandswiftenablesquietandartefactfreeeegfmriandawakefmristudiesinrat
AT grohnolli multibandswiftenablesquietandartefactfreeeegfmriandawakefmristudiesinrat