Cargando…

Subdiffuse scattering model for single fiber reflectance spectroscopy

To detect small-scale changes in tissue with optical techniques, small sampling volumes are required. Single fiber reflectance (SFR) spectroscopy has a sampling depth of a few hundred micrometers. SFR spectroscopy uses a single fiber to emit and collect light. The only available model to determine o...

Descripción completa

Detalles Bibliográficos
Autores principales: Post, Anouk L., Sterenborg, Henricus J. C. M., Woltjer, Fransien G., van Leeuwen, Ton G., Faber, Dirk J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Photo-Optical Instrumentation Engineers 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008500/
https://www.ncbi.nlm.nih.gov/pubmed/31920047
http://dx.doi.org/10.1117/1.JBO.25.1.015001
_version_ 1783495480004575232
author Post, Anouk L.
Sterenborg, Henricus J. C. M.
Woltjer, Fransien G.
van Leeuwen, Ton G.
Faber, Dirk J.
author_facet Post, Anouk L.
Sterenborg, Henricus J. C. M.
Woltjer, Fransien G.
van Leeuwen, Ton G.
Faber, Dirk J.
author_sort Post, Anouk L.
collection PubMed
description To detect small-scale changes in tissue with optical techniques, small sampling volumes are required. Single fiber reflectance (SFR) spectroscopy has a sampling depth of a few hundred micrometers. SFR spectroscopy uses a single fiber to emit and collect light. The only available model to determine optical properties with SFR spectroscopy was derived for tissues with modified Henyey–Greenstein phase functions. Previously, we demonstrated that this model is inadequate for other tissue phase functions. We develop a model to relate SFR measurements to scattering properties for a range of phase functions, in the absence of absorption. Since the source and detector overlap, the reflectance cannot be accurately described by diffusion theory alone: SFR measurements are subdiffuse. Therefore, we describe the reflectance as a combination of a diffuse and a semiballistic component. We use the model of Farrell et al. for the diffuse component, solved for an overlapping source and detector fiber. For the semiballistic component, we derive a new parameter, [Formula: see text] , which incorporates the integrals of the phase function over 1 deg in the backward direction and 23 deg in the forward direction. Our model predicts the reflectance with a median error of 2.1%, compared to 9.0% for the currently available model.
format Online
Article
Text
id pubmed-7008500
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Society of Photo-Optical Instrumentation Engineers
record_format MEDLINE/PubMed
spelling pubmed-70085002020-02-14 Subdiffuse scattering model for single fiber reflectance spectroscopy Post, Anouk L. Sterenborg, Henricus J. C. M. Woltjer, Fransien G. van Leeuwen, Ton G. Faber, Dirk J. J Biomed Opt General To detect small-scale changes in tissue with optical techniques, small sampling volumes are required. Single fiber reflectance (SFR) spectroscopy has a sampling depth of a few hundred micrometers. SFR spectroscopy uses a single fiber to emit and collect light. The only available model to determine optical properties with SFR spectroscopy was derived for tissues with modified Henyey–Greenstein phase functions. Previously, we demonstrated that this model is inadequate for other tissue phase functions. We develop a model to relate SFR measurements to scattering properties for a range of phase functions, in the absence of absorption. Since the source and detector overlap, the reflectance cannot be accurately described by diffusion theory alone: SFR measurements are subdiffuse. Therefore, we describe the reflectance as a combination of a diffuse and a semiballistic component. We use the model of Farrell et al. for the diffuse component, solved for an overlapping source and detector fiber. For the semiballistic component, we derive a new parameter, [Formula: see text] , which incorporates the integrals of the phase function over 1 deg in the backward direction and 23 deg in the forward direction. Our model predicts the reflectance with a median error of 2.1%, compared to 9.0% for the currently available model. Society of Photo-Optical Instrumentation Engineers 2020-01-09 2020-01 /pmc/articles/PMC7008500/ /pubmed/31920047 http://dx.doi.org/10.1117/1.JBO.25.1.015001 Text en © 2020 The Authors https://creativecommons.org/licenses/by/4.0/ Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
spellingShingle General
Post, Anouk L.
Sterenborg, Henricus J. C. M.
Woltjer, Fransien G.
van Leeuwen, Ton G.
Faber, Dirk J.
Subdiffuse scattering model for single fiber reflectance spectroscopy
title Subdiffuse scattering model for single fiber reflectance spectroscopy
title_full Subdiffuse scattering model for single fiber reflectance spectroscopy
title_fullStr Subdiffuse scattering model for single fiber reflectance spectroscopy
title_full_unstemmed Subdiffuse scattering model for single fiber reflectance spectroscopy
title_short Subdiffuse scattering model for single fiber reflectance spectroscopy
title_sort subdiffuse scattering model for single fiber reflectance spectroscopy
topic General
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008500/
https://www.ncbi.nlm.nih.gov/pubmed/31920047
http://dx.doi.org/10.1117/1.JBO.25.1.015001
work_keys_str_mv AT postanoukl subdiffusescatteringmodelforsinglefiberreflectancespectroscopy
AT sterenborghenricusjcm subdiffusescatteringmodelforsinglefiberreflectancespectroscopy
AT woltjerfransieng subdiffusescatteringmodelforsinglefiberreflectancespectroscopy
AT vanleeuwentong subdiffusescatteringmodelforsinglefiberreflectancespectroscopy
AT faberdirkj subdiffusescatteringmodelforsinglefiberreflectancespectroscopy