Cargando…

Optical changes in THP-1 macrophage metabolism in response to pro- and anti-inflammatory stimuli reported by label-free two-photon imaging

Temporal changes in macrophage metabolism are likely crucial to their role in inflammatory diseases. Label-free two-photon excited fluorescence (TPEF) and fluorescence lifetime imaging microscopy are well suited to track dynamic changes in macrophage metabolism. We performed TPEF imaging of human ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Smokelin, Isabel S., Mizzoni, Craig, Erndt-Marino, Josh, Kaplan, David L., Georgakoudi, Irene
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Photo-Optical Instrumentation Engineers 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008597/
https://www.ncbi.nlm.nih.gov/pubmed/31953928
http://dx.doi.org/10.1117/1.JBO.25.1.014512
Descripción
Sumario:Temporal changes in macrophage metabolism are likely crucial to their role in inflammatory diseases. Label-free two-photon excited fluorescence (TPEF) and fluorescence lifetime imaging microscopy are well suited to track dynamic changes in macrophage metabolism. We performed TPEF imaging of human macrophages following either pro- or an anti-inflammatory stimulation. Two endogenous fluorophores, NAD(P)H and FAD, coenzymes involved in key metabolic pathways, provided contrast. We used the corresponding intensity images to determine the optical redox ratio of FAD to FAD + NAD(P)H. We also analyzed the intensity fluctuation patterns within NAD(P)H TPEF images to determine mitochondrial clustering patterns. Finally, we acquired NAD(P)H TPEF lifetime images to assess the relative levels of bound NAD(P)H. Our studies indicate that the redox ratio increases, whereas mitochondrial clustering decreases in response to both pro- and anti-inflammatory stimuli; however, these changes are enhanced in pro-inflammatory macrophages. Interestingly, we did not detect any significant changes in the corresponding NAD(P)H bound fraction. A combination of optical metabolic metrics could be used to classify pro- and anti-inflammatory macrophages with high accuracy. Contributions from alterations in different metabolic pathways may explain our findings, which highlight the potential of label-free two-photon imaging to assess nondestructively macrophage functional state.