Cargando…
Structure and Properties of Nanosilicates with Olivine (Mg(2)SiO(4))(N) and Pyroxene (MgSiO(3))(N) Compositions
[Image: see text] Magnesium-rich silicates are ubiquitous both terrestrially and astronomically, where they are often present as small particles. Nanosized Mg-rich silicate particles are likely to be particularly important for understanding the formation, processing, and properties of cosmic dust gr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7009040/ https://www.ncbi.nlm.nih.gov/pubmed/32055761 http://dx.doi.org/10.1021/acsearthspacechem.9b00139 |
_version_ | 1783495577333399552 |
---|---|
author | Escatllar, Antoni Macià Lazaukas, Tomas Woodley, Scott M. Bromley, Stefan T. |
author_facet | Escatllar, Antoni Macià Lazaukas, Tomas Woodley, Scott M. Bromley, Stefan T. |
author_sort | Escatllar, Antoni Macià |
collection | PubMed |
description | [Image: see text] Magnesium-rich silicates are ubiquitous both terrestrially and astronomically, where they are often present as small particles. Nanosized Mg-rich silicate particles are likely to be particularly important for understanding the formation, processing, and properties of cosmic dust grains. Although astronomical observations and laboratory studies have revealed much about such silicate dust, our knowledge of this hugely important class of nanosolids largely rests on top-down comparisons with the properties of bulk silicates. Herein, we provide a foundational bottom-up study of the structure and properties of Mg-rich nanosilicates based on carefully procured atomistic models. Specifically, we employ state-of-the-art global optimization methods to search for the most stable structures of silicate nanoclusters with olivine (Mg(2)SiO(4))(N) and pyroxene (MgSiO(3))(N) compositions with N = 1–10. To ensure the reliability of our searches, we develop a new interatomic potential that has been especially tuned for nanosilicates. Subsequently, we refine these searches and calculate a range of physicochemical properties of the most stable nanoclusters using accurate density functional theory based electronic structure calculations. We report a detailed analysis of structural and energy properties, charge distributions, and infrared vibrational spectra, where in all cases we compare our finding for nanosilicates with those of the corresponding bulk silicate crystals. For most properties considered, we find large differences with respect to the bulk limit, underlining the limitations of a top-down approach for describing these species. Overall, our work provides a new platform for an accurate and detailed understanding of nanoscale silicates. |
format | Online Article Text |
id | pubmed-7009040 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-70090402020-02-11 Structure and Properties of Nanosilicates with Olivine (Mg(2)SiO(4))(N) and Pyroxene (MgSiO(3))(N) Compositions Escatllar, Antoni Macià Lazaukas, Tomas Woodley, Scott M. Bromley, Stefan T. ACS Earth Space Chem [Image: see text] Magnesium-rich silicates are ubiquitous both terrestrially and astronomically, where they are often present as small particles. Nanosized Mg-rich silicate particles are likely to be particularly important for understanding the formation, processing, and properties of cosmic dust grains. Although astronomical observations and laboratory studies have revealed much about such silicate dust, our knowledge of this hugely important class of nanosolids largely rests on top-down comparisons with the properties of bulk silicates. Herein, we provide a foundational bottom-up study of the structure and properties of Mg-rich nanosilicates based on carefully procured atomistic models. Specifically, we employ state-of-the-art global optimization methods to search for the most stable structures of silicate nanoclusters with olivine (Mg(2)SiO(4))(N) and pyroxene (MgSiO(3))(N) compositions with N = 1–10. To ensure the reliability of our searches, we develop a new interatomic potential that has been especially tuned for nanosilicates. Subsequently, we refine these searches and calculate a range of physicochemical properties of the most stable nanoclusters using accurate density functional theory based electronic structure calculations. We report a detailed analysis of structural and energy properties, charge distributions, and infrared vibrational spectra, where in all cases we compare our finding for nanosilicates with those of the corresponding bulk silicate crystals. For most properties considered, we find large differences with respect to the bulk limit, underlining the limitations of a top-down approach for describing these species. Overall, our work provides a new platform for an accurate and detailed understanding of nanoscale silicates. American Chemical Society 2019-07-19 2019-11-21 /pmc/articles/PMC7009040/ /pubmed/32055761 http://dx.doi.org/10.1021/acsearthspacechem.9b00139 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Escatllar, Antoni Macià Lazaukas, Tomas Woodley, Scott M. Bromley, Stefan T. Structure and Properties of Nanosilicates with Olivine (Mg(2)SiO(4))(N) and Pyroxene (MgSiO(3))(N) Compositions |
title | Structure and Properties of Nanosilicates with Olivine
(Mg(2)SiO(4))(N) and Pyroxene
(MgSiO(3))(N) Compositions |
title_full | Structure and Properties of Nanosilicates with Olivine
(Mg(2)SiO(4))(N) and Pyroxene
(MgSiO(3))(N) Compositions |
title_fullStr | Structure and Properties of Nanosilicates with Olivine
(Mg(2)SiO(4))(N) and Pyroxene
(MgSiO(3))(N) Compositions |
title_full_unstemmed | Structure and Properties of Nanosilicates with Olivine
(Mg(2)SiO(4))(N) and Pyroxene
(MgSiO(3))(N) Compositions |
title_short | Structure and Properties of Nanosilicates with Olivine
(Mg(2)SiO(4))(N) and Pyroxene
(MgSiO(3))(N) Compositions |
title_sort | structure and properties of nanosilicates with olivine
(mg(2)sio(4))(n) and pyroxene
(mgsio(3))(n) compositions |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7009040/ https://www.ncbi.nlm.nih.gov/pubmed/32055761 http://dx.doi.org/10.1021/acsearthspacechem.9b00139 |
work_keys_str_mv | AT escatllarantonimacia structureandpropertiesofnanosilicateswitholivinemg2sio4nandpyroxenemgsio3ncompositions AT lazaukastomas structureandpropertiesofnanosilicateswitholivinemg2sio4nandpyroxenemgsio3ncompositions AT woodleyscottm structureandpropertiesofnanosilicateswitholivinemg2sio4nandpyroxenemgsio3ncompositions AT bromleystefant structureandpropertiesofnanosilicateswitholivinemg2sio4nandpyroxenemgsio3ncompositions |