Cargando…
Downregulation of MiR-218-5p Protects Against Oxygen-Glucose Deprivation/Reperfusion-Induced Injuries of PC12 Cells via Upregulating N-myc Downstream Regulated Gene 4 (NDRG4)
BACKGROUND: Cerebral ischemia is a major player of acute ischemic stroke (AIS) and mainly caused by blood vessels obstruction-induced reduced blood flow. Furthermore, miR-218-5p level was elevated in patients with AIS compared with controls. The present study investigated the biochemical mechanisms...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7009718/ https://www.ncbi.nlm.nih.gov/pubmed/32048632 http://dx.doi.org/10.12659/MSM.920101 |
_version_ | 1783495730620530688 |
---|---|
author | Zhu, Huiying Wang, Xiaojing Chen, Shaoyuan |
author_facet | Zhu, Huiying Wang, Xiaojing Chen, Shaoyuan |
author_sort | Zhu, Huiying |
collection | PubMed |
description | BACKGROUND: Cerebral ischemia is a major player of acute ischemic stroke (AIS) and mainly caused by blood vessels obstruction-induced reduced blood flow. Furthermore, miR-218-5p level was elevated in patients with AIS compared with controls. The present study investigated the biochemical mechanisms underlying the role of miR-218-5p in AIS in vitro. MATERIAL/METHODS: PC12 cells were chosen to establish oxidative-glucose deprivation/re-oxygenation (OGD/R) injury model. The interaction between miR-218-5p and N-myc downstream regulated gene 4 (NDRG4) was evaluated by Luciferase reporter assay. The levels of NDRG4, endothelial nitric oxide synthase (eNOS) and protein related to cell apoptosis were quantitatively analyzed with real-time quantitative polymerase chain reaction (RT-qPCR) or western blotting. Inflammatory cytokines, myeloperoxidase (MPO) and oxidative stress status were measured using specific commercial assay kits. Further, the cells apoptosis was analyzed with flow cytometry assay. RESULTS: MiR-218-5p level was notably increased in OGD/R injured PC12 cells and directly targeted NDRG4. MiR-218-5p inhibitor significantly inhibited inflammatory cytokines release, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemotactic protein 1 (MCP-1). In addition, miR-218-5p downregulation ameliorated nitric oxide (NO) and eNOS levels and suppressed the inducible nitric oxide synthase (iNOS) expression and cell apoptosis. However, NDRG4 silencing abolished all corrective effects of miR-218-5p inhibitor in OGD/R injured PC12 cells. CONCLUSIONS: Downregulation of miR-218-5p protect against OGDR-induced injuries of PC12 cells through reducing inflammatory cytokines secretion, oxidative stress status, apoptosis rate and maintenance of endovascular homeostasis via upregulating NDRG4. MiR-218-5p may serve as a novel effective biomarker to monitor AIS progression. |
format | Online Article Text |
id | pubmed-7009718 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | International Scientific Literature, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-70097182020-02-24 Downregulation of MiR-218-5p Protects Against Oxygen-Glucose Deprivation/Reperfusion-Induced Injuries of PC12 Cells via Upregulating N-myc Downstream Regulated Gene 4 (NDRG4) Zhu, Huiying Wang, Xiaojing Chen, Shaoyuan Med Sci Monit Lab/In Vitro Research BACKGROUND: Cerebral ischemia is a major player of acute ischemic stroke (AIS) and mainly caused by blood vessels obstruction-induced reduced blood flow. Furthermore, miR-218-5p level was elevated in patients with AIS compared with controls. The present study investigated the biochemical mechanisms underlying the role of miR-218-5p in AIS in vitro. MATERIAL/METHODS: PC12 cells were chosen to establish oxidative-glucose deprivation/re-oxygenation (OGD/R) injury model. The interaction between miR-218-5p and N-myc downstream regulated gene 4 (NDRG4) was evaluated by Luciferase reporter assay. The levels of NDRG4, endothelial nitric oxide synthase (eNOS) and protein related to cell apoptosis were quantitatively analyzed with real-time quantitative polymerase chain reaction (RT-qPCR) or western blotting. Inflammatory cytokines, myeloperoxidase (MPO) and oxidative stress status were measured using specific commercial assay kits. Further, the cells apoptosis was analyzed with flow cytometry assay. RESULTS: MiR-218-5p level was notably increased in OGD/R injured PC12 cells and directly targeted NDRG4. MiR-218-5p inhibitor significantly inhibited inflammatory cytokines release, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemotactic protein 1 (MCP-1). In addition, miR-218-5p downregulation ameliorated nitric oxide (NO) and eNOS levels and suppressed the inducible nitric oxide synthase (iNOS) expression and cell apoptosis. However, NDRG4 silencing abolished all corrective effects of miR-218-5p inhibitor in OGD/R injured PC12 cells. CONCLUSIONS: Downregulation of miR-218-5p protect against OGDR-induced injuries of PC12 cells through reducing inflammatory cytokines secretion, oxidative stress status, apoptosis rate and maintenance of endovascular homeostasis via upregulating NDRG4. MiR-218-5p may serve as a novel effective biomarker to monitor AIS progression. International Scientific Literature, Inc. 2020-02-02 /pmc/articles/PMC7009718/ /pubmed/32048632 http://dx.doi.org/10.12659/MSM.920101 Text en © Med Sci Monit, 2020 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) ) |
spellingShingle | Lab/In Vitro Research Zhu, Huiying Wang, Xiaojing Chen, Shaoyuan Downregulation of MiR-218-5p Protects Against Oxygen-Glucose Deprivation/Reperfusion-Induced Injuries of PC12 Cells via Upregulating N-myc Downstream Regulated Gene 4 (NDRG4) |
title | Downregulation of MiR-218-5p Protects Against Oxygen-Glucose Deprivation/Reperfusion-Induced Injuries of PC12 Cells via Upregulating N-myc Downstream Regulated Gene 4 (NDRG4) |
title_full | Downregulation of MiR-218-5p Protects Against Oxygen-Glucose Deprivation/Reperfusion-Induced Injuries of PC12 Cells via Upregulating N-myc Downstream Regulated Gene 4 (NDRG4) |
title_fullStr | Downregulation of MiR-218-5p Protects Against Oxygen-Glucose Deprivation/Reperfusion-Induced Injuries of PC12 Cells via Upregulating N-myc Downstream Regulated Gene 4 (NDRG4) |
title_full_unstemmed | Downregulation of MiR-218-5p Protects Against Oxygen-Glucose Deprivation/Reperfusion-Induced Injuries of PC12 Cells via Upregulating N-myc Downstream Regulated Gene 4 (NDRG4) |
title_short | Downregulation of MiR-218-5p Protects Against Oxygen-Glucose Deprivation/Reperfusion-Induced Injuries of PC12 Cells via Upregulating N-myc Downstream Regulated Gene 4 (NDRG4) |
title_sort | downregulation of mir-218-5p protects against oxygen-glucose deprivation/reperfusion-induced injuries of pc12 cells via upregulating n-myc downstream regulated gene 4 (ndrg4) |
topic | Lab/In Vitro Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7009718/ https://www.ncbi.nlm.nih.gov/pubmed/32048632 http://dx.doi.org/10.12659/MSM.920101 |
work_keys_str_mv | AT zhuhuiying downregulationofmir2185pprotectsagainstoxygenglucosedeprivationreperfusioninducedinjuriesofpc12cellsviaupregulatingnmycdownstreamregulatedgene4ndrg4 AT wangxiaojing downregulationofmir2185pprotectsagainstoxygenglucosedeprivationreperfusioninducedinjuriesofpc12cellsviaupregulatingnmycdownstreamregulatedgene4ndrg4 AT chenshaoyuan downregulationofmir2185pprotectsagainstoxygenglucosedeprivationreperfusioninducedinjuriesofpc12cellsviaupregulatingnmycdownstreamregulatedgene4ndrg4 |