Cargando…
Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep Convolutional LSTM Network
The objective investigation of the dynamic properties of vocal fold vibrations demands the recording and further quantitative analysis of laryngeal high-speed video (HSV). Quantification of the vocal fold vibration patterns requires as a first step the segmentation of the glottal area within each vi...
Autores principales: | Fehling, Mona Kirstin, Grosch, Fabian, Schuster, Maria Elke, Schick, Bernhard, Lohscheller, Jörg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010264/ https://www.ncbi.nlm.nih.gov/pubmed/32040514 http://dx.doi.org/10.1371/journal.pone.0227791 |
Ejemplares similares
-
Long-term performance assessment of fully automatic biomedical glottis segmentation at the point of care
por: Groh, René, et al.
Publicado: (2022) -
Re-Training of Convolutional Neural Networks for Glottis Segmentation in Endoscopic High-Speed Videos
por: Döllinger, Michael, et al.
Publicado: (2022) -
Biomechanical simulation of vocal fold dynamics in adults based on laryngeal high-speed videoendoscopy
por: Döllinger, Michael, et al.
Publicado: (2017) -
BAGLS, a multihospital Benchmark for Automatic Glottis Segmentation
por: Gómez, Pablo, et al.
Publicado: (2020) -
Œdema of the Glottis
Publicado: (1905)