Cargando…
Uniaxial versus biaxial character of nematic equilibria in three dimensions
We study global minimizers of the Landau–de Gennes (LdG) energy functional for nematic liquid crystals, on arbitrary three-dimensional simply connected geometries with topologically non-trivial and physically relevant Dirichlet boundary conditions. Our results are specific to an asymptotic limit coi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010394/ https://www.ncbi.nlm.nih.gov/pubmed/32103865 http://dx.doi.org/10.1007/s00526-017-1142-8 |
Sumario: | We study global minimizers of the Landau–de Gennes (LdG) energy functional for nematic liquid crystals, on arbitrary three-dimensional simply connected geometries with topologically non-trivial and physically relevant Dirichlet boundary conditions. Our results are specific to an asymptotic limit coined in terms of a dimensionless temperature and material-dependent parameter, t and some constraints on the material parameters, and we work in the [Formula: see text] limit that captures features of the widely used Lyuksyutov constraint (Kralj and Virga in J Phys A 34:829–838, 2001). We prove (i) that (re-scaled) global LdG minimizers converge uniformly to a (minimizing) limiting harmonic map, away from the singular set of the limiting map; (ii) we have points of maximal biaxiality and uniaxiality near each singular point of the limiting map; (iii) estimates for the size of “strongly biaxial” regions in terms of the parameter t. We further show that global LdG minimizers in the restricted class of uniaxial [Formula: see text] -tensors cannot be stable critical points of the LdG energy in this limit. |
---|