Cargando…

Uniaxial versus biaxial character of nematic equilibria in three dimensions

We study global minimizers of the Landau–de Gennes (LdG) energy functional for nematic liquid crystals, on arbitrary three-dimensional simply connected geometries with topologically non-trivial and physically relevant Dirichlet boundary conditions. Our results are specific to an asymptotic limit coi...

Descripción completa

Detalles Bibliográficos
Autores principales: Henao, Duvan, Majumdar, Apala, Pisante, Adriano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010394/
https://www.ncbi.nlm.nih.gov/pubmed/32103865
http://dx.doi.org/10.1007/s00526-017-1142-8
_version_ 1783495870592843776
author Henao, Duvan
Majumdar, Apala
Pisante, Adriano
author_facet Henao, Duvan
Majumdar, Apala
Pisante, Adriano
author_sort Henao, Duvan
collection PubMed
description We study global minimizers of the Landau–de Gennes (LdG) energy functional for nematic liquid crystals, on arbitrary three-dimensional simply connected geometries with topologically non-trivial and physically relevant Dirichlet boundary conditions. Our results are specific to an asymptotic limit coined in terms of a dimensionless temperature and material-dependent parameter, t and some constraints on the material parameters, and we work in the [Formula: see text] limit that captures features of the widely used Lyuksyutov constraint (Kralj and Virga in J Phys A 34:829–838, 2001). We prove (i) that (re-scaled) global LdG minimizers converge uniformly to a (minimizing) limiting harmonic map, away from the singular set of the limiting map; (ii) we have points of maximal biaxiality and uniaxiality near each singular point of the limiting map; (iii) estimates for the size of “strongly biaxial” regions in terms of the parameter t. We further show that global LdG minimizers in the restricted class of uniaxial [Formula: see text] -tensors cannot be stable critical points of the LdG energy in this limit.
format Online
Article
Text
id pubmed-7010394
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-70103942020-02-24 Uniaxial versus biaxial character of nematic equilibria in three dimensions Henao, Duvan Majumdar, Apala Pisante, Adriano Calc Var Partial Differ Equ Article We study global minimizers of the Landau–de Gennes (LdG) energy functional for nematic liquid crystals, on arbitrary three-dimensional simply connected geometries with topologically non-trivial and physically relevant Dirichlet boundary conditions. Our results are specific to an asymptotic limit coined in terms of a dimensionless temperature and material-dependent parameter, t and some constraints on the material parameters, and we work in the [Formula: see text] limit that captures features of the widely used Lyuksyutov constraint (Kralj and Virga in J Phys A 34:829–838, 2001). We prove (i) that (re-scaled) global LdG minimizers converge uniformly to a (minimizing) limiting harmonic map, away from the singular set of the limiting map; (ii) we have points of maximal biaxiality and uniaxiality near each singular point of the limiting map; (iii) estimates for the size of “strongly biaxial” regions in terms of the parameter t. We further show that global LdG minimizers in the restricted class of uniaxial [Formula: see text] -tensors cannot be stable critical points of the LdG energy in this limit. Springer Berlin Heidelberg 2017-04-04 2017 /pmc/articles/PMC7010394/ /pubmed/32103865 http://dx.doi.org/10.1007/s00526-017-1142-8 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Henao, Duvan
Majumdar, Apala
Pisante, Adriano
Uniaxial versus biaxial character of nematic equilibria in three dimensions
title Uniaxial versus biaxial character of nematic equilibria in three dimensions
title_full Uniaxial versus biaxial character of nematic equilibria in three dimensions
title_fullStr Uniaxial versus biaxial character of nematic equilibria in three dimensions
title_full_unstemmed Uniaxial versus biaxial character of nematic equilibria in three dimensions
title_short Uniaxial versus biaxial character of nematic equilibria in three dimensions
title_sort uniaxial versus biaxial character of nematic equilibria in three dimensions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010394/
https://www.ncbi.nlm.nih.gov/pubmed/32103865
http://dx.doi.org/10.1007/s00526-017-1142-8
work_keys_str_mv AT henaoduvan uniaxialversusbiaxialcharacterofnematicequilibriainthreedimensions
AT majumdarapala uniaxialversusbiaxialcharacterofnematicequilibriainthreedimensions
AT pisanteadriano uniaxialversusbiaxialcharacterofnematicequilibriainthreedimensions