Cargando…

Intergranular Strain Evolution During Biaxial Loading: A Multiscale FE-FFT Approach

Predicting the macroscopic and microscopic mechanical response of metals and alloys subjected to complex loading conditions necessarily requires a synergistic combination of multiscale material models and characterization techniques. This article focuses on the use of a multiscale approach to study...

Descripción completa

Detalles Bibliográficos
Autores principales: Upadhyay, M. V., Capek, J., Van Petegem, S., Lebensohn, R. A., Van Swygenhoven, H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010399/
https://www.ncbi.nlm.nih.gov/pubmed/32103877
http://dx.doi.org/10.1007/s11837-017-2299-5
_version_ 1783495871705382912
author Upadhyay, M. V.
Capek, J.
Van Petegem, S.
Lebensohn, R. A.
Van Swygenhoven, H.
author_facet Upadhyay, M. V.
Capek, J.
Van Petegem, S.
Lebensohn, R. A.
Van Swygenhoven, H.
author_sort Upadhyay, M. V.
collection PubMed
description Predicting the macroscopic and microscopic mechanical response of metals and alloys subjected to complex loading conditions necessarily requires a synergistic combination of multiscale material models and characterization techniques. This article focuses on the use of a multiscale approach to study the difference between intergranular lattice strain evolution for various grain families measured during in situ neutron diffraction on dog bone and cruciform 316L samples. At the macroscale, finite element simulations capture the complex coupling between applied forces and gauge stresses in cruciform geometries. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale full-field elasto-viscoplastic fast Fourier transform crystal plasticity model. The results highlight the role of grain neighborhood on the intergranular strain evolution under uniaxial and equibiaxial loading.
format Online
Article
Text
id pubmed-7010399
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-70103992020-02-24 Intergranular Strain Evolution During Biaxial Loading: A Multiscale FE-FFT Approach Upadhyay, M. V. Capek, J. Van Petegem, S. Lebensohn, R. A. Van Swygenhoven, H. JOM (1989) Article Predicting the macroscopic and microscopic mechanical response of metals and alloys subjected to complex loading conditions necessarily requires a synergistic combination of multiscale material models and characterization techniques. This article focuses on the use of a multiscale approach to study the difference between intergranular lattice strain evolution for various grain families measured during in situ neutron diffraction on dog bone and cruciform 316L samples. At the macroscale, finite element simulations capture the complex coupling between applied forces and gauge stresses in cruciform geometries. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale full-field elasto-viscoplastic fast Fourier transform crystal plasticity model. The results highlight the role of grain neighborhood on the intergranular strain evolution under uniaxial and equibiaxial loading. Springer US 2017-03-10 2017 /pmc/articles/PMC7010399/ /pubmed/32103877 http://dx.doi.org/10.1007/s11837-017-2299-5 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Upadhyay, M. V.
Capek, J.
Van Petegem, S.
Lebensohn, R. A.
Van Swygenhoven, H.
Intergranular Strain Evolution During Biaxial Loading: A Multiscale FE-FFT Approach
title Intergranular Strain Evolution During Biaxial Loading: A Multiscale FE-FFT Approach
title_full Intergranular Strain Evolution During Biaxial Loading: A Multiscale FE-FFT Approach
title_fullStr Intergranular Strain Evolution During Biaxial Loading: A Multiscale FE-FFT Approach
title_full_unstemmed Intergranular Strain Evolution During Biaxial Loading: A Multiscale FE-FFT Approach
title_short Intergranular Strain Evolution During Biaxial Loading: A Multiscale FE-FFT Approach
title_sort intergranular strain evolution during biaxial loading: a multiscale fe-fft approach
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010399/
https://www.ncbi.nlm.nih.gov/pubmed/32103877
http://dx.doi.org/10.1007/s11837-017-2299-5
work_keys_str_mv AT upadhyaymv intergranularstrainevolutionduringbiaxialloadingamultiscalefefftapproach
AT capekj intergranularstrainevolutionduringbiaxialloadingamultiscalefefftapproach
AT vanpetegems intergranularstrainevolutionduringbiaxialloadingamultiscalefefftapproach
AT lebensohnra intergranularstrainevolutionduringbiaxialloadingamultiscalefefftapproach
AT vanswygenhovenh intergranularstrainevolutionduringbiaxialloadingamultiscalefefftapproach