Cargando…
CALISTA: Clustering and LINEAGE Inference in Single-Cell Transcriptional Analysis
We present Clustering and Lineage Inference in Single-Cell Transcriptional Analysis (CALISTA), a numerically efficient and highly scalable toolbox for an end-to-end analysis of single-cell transcriptomic profiles. CALISTA includes four essential single-cell analyses for cell differentiation studies,...
Autores principales: | Papili Gao, Nan, Hartmann, Thomas, Fang, Tao, Gunawan, Rudiyanto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010602/ https://www.ncbi.nlm.nih.gov/pubmed/32117910 http://dx.doi.org/10.3389/fbioe.2020.00018 |
Ejemplares similares
-
SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles
por: Papili Gao, Nan, et al.
Publicado: (2018) -
Single-cell transcriptional uncertainty landscape of cell differentiation
por: Gao, Nan Papili, et al.
Publicado: (2023) -
Transcriptional Activation of Biosynthetic Gene Clusters in Filamentous Fungi
por: Mózsik, László, et al.
Publicado: (2022) -
Ensemble Inference and Inferability of Gene Regulatory Networks
por: Ud-Dean, S. M. Minhaz, et al.
Publicado: (2014) -
An Effective Graph Clustering Method to Identify Cancer Driver Modules
por: Zhang, Wei, et al.
Publicado: (2020)