Cargando…

Berry-Hannay relation in nonlinear optomechanics

We address the quantum-classical comparison of phase measurements in optomechanics in the general framework of Berry phases for composite systems. While the relation between Berry phase and Hannay angle has been proven for a large set of quadratic Hamiltonians, such correspondence has not been shown...

Descripción completa

Detalles Bibliográficos
Autores principales: Latmiral, Ludovico, Armata, Federico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010711/
https://www.ncbi.nlm.nih.gov/pubmed/32042012
http://dx.doi.org/10.1038/s41598-020-59081-5
Descripción
Sumario:We address the quantum-classical comparison of phase measurements in optomechanics in the general framework of Berry phases for composite systems. While the relation between Berry phase and Hannay angle has been proven for a large set of quadratic Hamiltonians, such correspondence has not been shown so far in the case of non-linear interactions (e.g. when three or more operators are involved). Remarkably, considering the full optomechanical interaction we recover the aforementioned mathematical relation with the Hannay angle obtained from classical equations of motion. Our results link at a fundamental level previous proposals to measure decoherence, such as the one expressed by Marshall et al., with the no-go theorem shown by Armata et al., which provides boundaries to understand the quantum-to-classical transition in optomechanics.