Cargando…
Small-worldness favours network inference in synthetic neural networks
A main goal in the analysis of a complex system is to infer its underlying network structure from time-series observations of its behaviour. The inference process is often done by using bi-variate similarity measures, such as the cross-correlation (CC) or mutual information (MI), however, the main f...
Autores principales: | García, Rodrigo A., Martí, Arturo C., Cabeza, Cecilia, Rubido, Nicolás |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010800/ https://www.ncbi.nlm.nih.gov/pubmed/32042036 http://dx.doi.org/10.1038/s41598-020-59198-7 |
Ejemplares similares
-
ProteInfer, deep neural networks for protein functional inference
por: Sanderson, Theo, et al.
Publicado: (2023) -
Dynamical detection of network communities
por: Quiles, Marcos G., et al.
Publicado: (2016) -
Parameter inference in small world network disease models with approximate Bayesian Computational methods
por: Walker, David M., et al.
Publicado: (2010) -
A graph neural network framework for causal inference in brain networks
por: Wein, S., et al.
Publicado: (2021) -
Graph Neural Network(GNN) Inference of FPGA
por: Fuad, Kazi Ahmed Asif
Publicado: (2019)