Cargando…
Deep learning workflow in radiology: a primer
Interest for deep learning in radiology has increased tremendously in the past decade due to the high achievable performance for various computer vision tasks such as detection, segmentation, classification, monitoring, and prediction. This article provides step-by-step practical guidance for conduc...
Autores principales: | Montagnon, Emmanuel, Cerny, Milena, Cadrin-Chênevert, Alexandre, Hamilton, Vincent, Derennes, Thomas, Ilinca, André, Vandenbroucke-Menu, Franck, Turcotte, Simon, Kadoury, Samuel, Tang, An |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010882/ https://www.ncbi.nlm.nih.gov/pubmed/32040647 http://dx.doi.org/10.1186/s13244-019-0832-5 |
Ejemplares similares
-
Interpretable clinical phenotypes among patients hospitalized with COVID-19 using cluster analysis
por: Yamga, Eric, et al.
Publicado: (2023) -
Radiomics using computed tomography to predict CD73 expression and prognosis of colorectal cancer liver metastases
por: Saber, Ralph, et al.
Publicado: (2023) -
Principles for data analysis workflows
por: Stoudt, Sara, et al.
Publicado: (2021) -
A primer on deep learning and convolutional neural networks for clinicians
por: Iglesias, Lara Lloret, et al.
Publicado: (2021) -
Ten quick tips for building FAIR workflows
por: de Visser, Casper, et al.
Publicado: (2023)