Cargando…
Prediction of Chronic Disease-Related Inpatient Prolonged Length of Stay Using Machine Learning Algorithms
OBJECTIVES: The study aimed to develop and compare predictive models based on supervised machine learning algorithms for predicting the prolonged length of stay (LOS) of hospitalized patients diagnosed with five different chronic conditions. METHODS: An administrative claim dataset (2008–2012) of a...
Autores principales: | Symum, Hasan, Zayas-Castro, José L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010949/ https://www.ncbi.nlm.nih.gov/pubmed/32082697 http://dx.doi.org/10.4258/hir.2020.26.1.20 |
Ejemplares similares
-
Predicting Prolonged Length of ICU Stay through Machine Learning
por: Wu, Jingyi, et al.
Publicado: (2021) -
Identifying Children at Readmission Risk: At-Admission versus Traditional At-Discharge Readmission Prediction Model
por: Symum, Hasan, et al.
Publicado: (2021) -
Prediction algorithm for ICU mortality and length of stay using machine learning
por: Iwase, Shinya, et al.
Publicado: (2022) -
Impact of the COVID-19 Pandemic on the Pediatric Hospital Visits: Evidence from the State of Florida
por: Symum, Hasan, et al.
Publicado: (2022) -
Impact of Statewide Mandatory Medicaid Managed Care (SMMC) Programs on Hospital Obstetric Outcomes
por: Symum, Hasan, et al.
Publicado: (2022)