Cargando…

Quantitative and qualitative analysis of head and body impacts in American 7v7 non-tackle football

OBJECTIVES: Non-tackle American football is growing in popularity, and it has been proposed as a safer alternative for young athletes interested in American football. Little is known about the nature of head contact in the sport, which is necessary to inform the extent to which protective headgear i...

Descripción completa

Detalles Bibliográficos
Autores principales: Jadischke, Ron, Zendler, Jessica, Lovis, Erik, Elliott, Andrew, Goulet, Grant C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7011012/
https://www.ncbi.nlm.nih.gov/pubmed/32095268
http://dx.doi.org/10.1136/bmjsem-2019-000638
Descripción
Sumario:OBJECTIVES: Non-tackle American football is growing in popularity, and it has been proposed as a safer alternative for young athletes interested in American football. Little is known about the nature of head contact in the sport, which is necessary to inform the extent to which protective headgear is warranted. The objective of this study was to identify the location, types and frequency of head and body contacts in competitive 7v7 non-tackle American football. METHODS: Video analysis was used to document the type, frequency and mechanism of contacts across a series of under 12, under 14 and high school non-tackle tournament games. A subset of impacts was quantitatively analysed via 3-D model-based image matching to calculate the preimpact and postimpact speed of players’ heads and the change in resultant translational and rotational velocities. RESULTS: The incidence rate of head contact was found to be low (3.5 contacts per 1000 athlete-plays). Seventy-five per cent of head contacts were caused by a head-to-ground impact. No head-to-head contacts were identified. Most contacts occurred to the rear upper (occiput) or side upper (temporal/parietal) regions. Head-to-ground impact was associated with a maximum preimpact velocity of 5.9±2.2 m/s and a change in velocity of 3.0±1.1 m/s. CONCLUSION: Non-tackle football appears to represent a lower contact alternative to tackle football. The distribution of head impact locations, mechanisms and energies found in the present study is different than what has been previously reported for tackle football. The existing tackle football standards are not appropriate to be applied to the sport of non-tackle football, and sport-specific head protection and headgear certification standards must be determined.