Cargando…

Letter to the editor: a response to Ming’s study on machine learning techniques for personalized breast cancer risk prediction

Detalles Bibliográficos
Autores principales: Giardiello, Daniele, Antoniou, Antonis C., Mariani, Luigi, Easton, Douglas F., Steyerberg, Ewout W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7011440/
https://www.ncbi.nlm.nih.gov/pubmed/32041655
http://dx.doi.org/10.1186/s13058-020-1255-4
_version_ 1783496067381198848
author Giardiello, Daniele
Antoniou, Antonis C.
Mariani, Luigi
Easton, Douglas F.
Steyerberg, Ewout W.
author_facet Giardiello, Daniele
Antoniou, Antonis C.
Mariani, Luigi
Easton, Douglas F.
Steyerberg, Ewout W.
author_sort Giardiello, Daniele
collection PubMed
description
format Online
Article
Text
id pubmed-7011440
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-70114402020-02-14 Letter to the editor: a response to Ming’s study on machine learning techniques for personalized breast cancer risk prediction Giardiello, Daniele Antoniou, Antonis C. Mariani, Luigi Easton, Douglas F. Steyerberg, Ewout W. Breast Cancer Res Letter BioMed Central 2020-02-10 2020 /pmc/articles/PMC7011440/ /pubmed/32041655 http://dx.doi.org/10.1186/s13058-020-1255-4 Text en © The Author(s). 2020 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Letter
Giardiello, Daniele
Antoniou, Antonis C.
Mariani, Luigi
Easton, Douglas F.
Steyerberg, Ewout W.
Letter to the editor: a response to Ming’s study on machine learning techniques for personalized breast cancer risk prediction
title Letter to the editor: a response to Ming’s study on machine learning techniques for personalized breast cancer risk prediction
title_full Letter to the editor: a response to Ming’s study on machine learning techniques for personalized breast cancer risk prediction
title_fullStr Letter to the editor: a response to Ming’s study on machine learning techniques for personalized breast cancer risk prediction
title_full_unstemmed Letter to the editor: a response to Ming’s study on machine learning techniques for personalized breast cancer risk prediction
title_short Letter to the editor: a response to Ming’s study on machine learning techniques for personalized breast cancer risk prediction
title_sort letter to the editor: a response to ming’s study on machine learning techniques for personalized breast cancer risk prediction
topic Letter
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7011440/
https://www.ncbi.nlm.nih.gov/pubmed/32041655
http://dx.doi.org/10.1186/s13058-020-1255-4
work_keys_str_mv AT giardiellodaniele lettertotheeditoraresponsetomingsstudyonmachinelearningtechniquesforpersonalizedbreastcancerriskprediction
AT antoniouantonisc lettertotheeditoraresponsetomingsstudyonmachinelearningtechniquesforpersonalizedbreastcancerriskprediction
AT marianiluigi lettertotheeditoraresponsetomingsstudyonmachinelearningtechniquesforpersonalizedbreastcancerriskprediction
AT eastondouglasf lettertotheeditoraresponsetomingsstudyonmachinelearningtechniquesforpersonalizedbreastcancerriskprediction
AT steyerbergewoutw lettertotheeditoraresponsetomingsstudyonmachinelearningtechniquesforpersonalizedbreastcancerriskprediction