Cargando…

Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics

Processing of positron emission tomography (PET) data typically involves manual work, causing inter-operator variance. Here we introduce the Magia toolbox that enables processing of brain PET data with minimal user intervention. We investigated the accuracy of Magia with four tracers: [(11)C]carfent...

Descripción completa

Detalles Bibliográficos
Autores principales: Karjalainen, Tomi, Tuisku, Jouni, Santavirta, Severi, Kantonen, Tatu, Bucci, Marco, Tuominen, Lauri, Hirvonen, Jussi, Hietala, Jarmo, Rinne, Juha O., Nummenmaa, Lauri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012016/
https://www.ncbi.nlm.nih.gov/pubmed/32116627
http://dx.doi.org/10.3389/fninf.2020.00003
_version_ 1783496176365993984
author Karjalainen, Tomi
Tuisku, Jouni
Santavirta, Severi
Kantonen, Tatu
Bucci, Marco
Tuominen, Lauri
Hirvonen, Jussi
Hietala, Jarmo
Rinne, Juha O.
Nummenmaa, Lauri
author_facet Karjalainen, Tomi
Tuisku, Jouni
Santavirta, Severi
Kantonen, Tatu
Bucci, Marco
Tuominen, Lauri
Hirvonen, Jussi
Hietala, Jarmo
Rinne, Juha O.
Nummenmaa, Lauri
author_sort Karjalainen, Tomi
collection PubMed
description Processing of positron emission tomography (PET) data typically involves manual work, causing inter-operator variance. Here we introduce the Magia toolbox that enables processing of brain PET data with minimal user intervention. We investigated the accuracy of Magia with four tracers: [(11)C]carfentanil, [(11)C]raclopride, [(11)C]MADAM, and [(11)C]PiB. We used data from 30 control subjects for each tracer. Five operators manually delineated reference regions for each subject. The data were processed using Magia using the manually and automatically generated reference regions. We first assessed inter-operator variance resulting from the manual delineation of reference regions. We then compared the differences between the manually and automatically produced reference regions and the subsequently obtained binding potentials and standardized-uptake-value-ratios. The results show that manually produced reference regions can be remarkably different from each other, leading to substantial differences also in outcome measures. While the Magia-derived reference regions were anatomically different from the manual ones, Magia produced outcome measures highly consistent with the average of the manually obtained estimates. For [(11)C]carfentanil and [(11)C]PiB there was no bias, while for [(11)C]raclopride and [(11)C]MADAM Magia produced 3–5% higher binding potentials. Based on these results and considering the high inter-operator variance of the manual method, we conclude that Magia can be reliably used to process brain PET data.
format Online
Article
Text
id pubmed-7012016
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-70120162020-02-28 Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics Karjalainen, Tomi Tuisku, Jouni Santavirta, Severi Kantonen, Tatu Bucci, Marco Tuominen, Lauri Hirvonen, Jussi Hietala, Jarmo Rinne, Juha O. Nummenmaa, Lauri Front Neuroinform Neuroscience Processing of positron emission tomography (PET) data typically involves manual work, causing inter-operator variance. Here we introduce the Magia toolbox that enables processing of brain PET data with minimal user intervention. We investigated the accuracy of Magia with four tracers: [(11)C]carfentanil, [(11)C]raclopride, [(11)C]MADAM, and [(11)C]PiB. We used data from 30 control subjects for each tracer. Five operators manually delineated reference regions for each subject. The data were processed using Magia using the manually and automatically generated reference regions. We first assessed inter-operator variance resulting from the manual delineation of reference regions. We then compared the differences between the manually and automatically produced reference regions and the subsequently obtained binding potentials and standardized-uptake-value-ratios. The results show that manually produced reference regions can be remarkably different from each other, leading to substantial differences also in outcome measures. While the Magia-derived reference regions were anatomically different from the manual ones, Magia produced outcome measures highly consistent with the average of the manually obtained estimates. For [(11)C]carfentanil and [(11)C]PiB there was no bias, while for [(11)C]raclopride and [(11)C]MADAM Magia produced 3–5% higher binding potentials. Based on these results and considering the high inter-operator variance of the manual method, we conclude that Magia can be reliably used to process brain PET data. Frontiers Media S.A. 2020-02-04 /pmc/articles/PMC7012016/ /pubmed/32116627 http://dx.doi.org/10.3389/fninf.2020.00003 Text en Copyright © 2020 Karjalainen, Tuisku, Santavirta, Kantonen, Bucci, Tuominen, Hirvonen, Hietala, Rinne and Nummenmaa. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Karjalainen, Tomi
Tuisku, Jouni
Santavirta, Severi
Kantonen, Tatu
Bucci, Marco
Tuominen, Lauri
Hirvonen, Jussi
Hietala, Jarmo
Rinne, Juha O.
Nummenmaa, Lauri
Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics
title Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics
title_full Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics
title_fullStr Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics
title_full_unstemmed Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics
title_short Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics
title_sort magia: robust automated image processing and kinetic modeling toolbox for pet neuroinformatics
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012016/
https://www.ncbi.nlm.nih.gov/pubmed/32116627
http://dx.doi.org/10.3389/fninf.2020.00003
work_keys_str_mv AT karjalainentomi magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics
AT tuiskujouni magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics
AT santavirtaseveri magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics
AT kantonentatu magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics
AT buccimarco magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics
AT tuominenlauri magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics
AT hirvonenjussi magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics
AT hietalajarmo magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics
AT rinnejuhao magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics
AT nummenmaalauri magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics