Cargando…
Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics
Processing of positron emission tomography (PET) data typically involves manual work, causing inter-operator variance. Here we introduce the Magia toolbox that enables processing of brain PET data with minimal user intervention. We investigated the accuracy of Magia with four tracers: [(11)C]carfent...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012016/ https://www.ncbi.nlm.nih.gov/pubmed/32116627 http://dx.doi.org/10.3389/fninf.2020.00003 |
_version_ | 1783496176365993984 |
---|---|
author | Karjalainen, Tomi Tuisku, Jouni Santavirta, Severi Kantonen, Tatu Bucci, Marco Tuominen, Lauri Hirvonen, Jussi Hietala, Jarmo Rinne, Juha O. Nummenmaa, Lauri |
author_facet | Karjalainen, Tomi Tuisku, Jouni Santavirta, Severi Kantonen, Tatu Bucci, Marco Tuominen, Lauri Hirvonen, Jussi Hietala, Jarmo Rinne, Juha O. Nummenmaa, Lauri |
author_sort | Karjalainen, Tomi |
collection | PubMed |
description | Processing of positron emission tomography (PET) data typically involves manual work, causing inter-operator variance. Here we introduce the Magia toolbox that enables processing of brain PET data with minimal user intervention. We investigated the accuracy of Magia with four tracers: [(11)C]carfentanil, [(11)C]raclopride, [(11)C]MADAM, and [(11)C]PiB. We used data from 30 control subjects for each tracer. Five operators manually delineated reference regions for each subject. The data were processed using Magia using the manually and automatically generated reference regions. We first assessed inter-operator variance resulting from the manual delineation of reference regions. We then compared the differences between the manually and automatically produced reference regions and the subsequently obtained binding potentials and standardized-uptake-value-ratios. The results show that manually produced reference regions can be remarkably different from each other, leading to substantial differences also in outcome measures. While the Magia-derived reference regions were anatomically different from the manual ones, Magia produced outcome measures highly consistent with the average of the manually obtained estimates. For [(11)C]carfentanil and [(11)C]PiB there was no bias, while for [(11)C]raclopride and [(11)C]MADAM Magia produced 3–5% higher binding potentials. Based on these results and considering the high inter-operator variance of the manual method, we conclude that Magia can be reliably used to process brain PET data. |
format | Online Article Text |
id | pubmed-7012016 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-70120162020-02-28 Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics Karjalainen, Tomi Tuisku, Jouni Santavirta, Severi Kantonen, Tatu Bucci, Marco Tuominen, Lauri Hirvonen, Jussi Hietala, Jarmo Rinne, Juha O. Nummenmaa, Lauri Front Neuroinform Neuroscience Processing of positron emission tomography (PET) data typically involves manual work, causing inter-operator variance. Here we introduce the Magia toolbox that enables processing of brain PET data with minimal user intervention. We investigated the accuracy of Magia with four tracers: [(11)C]carfentanil, [(11)C]raclopride, [(11)C]MADAM, and [(11)C]PiB. We used data from 30 control subjects for each tracer. Five operators manually delineated reference regions for each subject. The data were processed using Magia using the manually and automatically generated reference regions. We first assessed inter-operator variance resulting from the manual delineation of reference regions. We then compared the differences between the manually and automatically produced reference regions and the subsequently obtained binding potentials and standardized-uptake-value-ratios. The results show that manually produced reference regions can be remarkably different from each other, leading to substantial differences also in outcome measures. While the Magia-derived reference regions were anatomically different from the manual ones, Magia produced outcome measures highly consistent with the average of the manually obtained estimates. For [(11)C]carfentanil and [(11)C]PiB there was no bias, while for [(11)C]raclopride and [(11)C]MADAM Magia produced 3–5% higher binding potentials. Based on these results and considering the high inter-operator variance of the manual method, we conclude that Magia can be reliably used to process brain PET data. Frontiers Media S.A. 2020-02-04 /pmc/articles/PMC7012016/ /pubmed/32116627 http://dx.doi.org/10.3389/fninf.2020.00003 Text en Copyright © 2020 Karjalainen, Tuisku, Santavirta, Kantonen, Bucci, Tuominen, Hirvonen, Hietala, Rinne and Nummenmaa. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Karjalainen, Tomi Tuisku, Jouni Santavirta, Severi Kantonen, Tatu Bucci, Marco Tuominen, Lauri Hirvonen, Jussi Hietala, Jarmo Rinne, Juha O. Nummenmaa, Lauri Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics |
title | Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics |
title_full | Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics |
title_fullStr | Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics |
title_full_unstemmed | Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics |
title_short | Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics |
title_sort | magia: robust automated image processing and kinetic modeling toolbox for pet neuroinformatics |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012016/ https://www.ncbi.nlm.nih.gov/pubmed/32116627 http://dx.doi.org/10.3389/fninf.2020.00003 |
work_keys_str_mv | AT karjalainentomi magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics AT tuiskujouni magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics AT santavirtaseveri magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics AT kantonentatu magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics AT buccimarco magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics AT tuominenlauri magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics AT hirvonenjussi magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics AT hietalajarmo magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics AT rinnejuhao magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics AT nummenmaalauri magiarobustautomatedimageprocessingandkineticmodelingtoolboxforpetneuroinformatics |