Cargando…
A Multichannel 2D Convolutional Neural Network Model for Task-Evoked fMRI Data Classification
Deep learning models have been successfully applied to the analysis of various functional MRI data. Convolutional neural networks (CNN), a class of deep neural networks, have been found to excel at extracting local meaningful features based on their shared-weights architecture and space invariance c...
Autores principales: | Hu, Jinlong, Kuang, Yuezhen, Liao, Bin, Cao, Lijie, Dong, Shoubin, Li, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012272/ https://www.ncbi.nlm.nih.gov/pubmed/32082370 http://dx.doi.org/10.1155/2019/5065214 |
Ejemplares similares
-
Design of Deep Learning Model for Task-Evoked fMRI Data Classification
por: Huang, Xiaojie, et al.
Publicado: (2021) -
Task-evoked simultaneous FDG-PET and fMRI data for measurement of neural metabolism in the human visual cortex
por: Jamadar, Sharna D., et al.
Publicado: (2021) -
Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture
por: Meszlényi, Regina J., et al.
Publicado: (2017) -
High Classification Accuracy for Schizophrenia with Rest and Task fMRI Data
por: Du, Wei, et al.
Publicado: (2012) -
Multichannel Convolutional Neural Network for Biological Relation Extraction
por: Quan, Chanqin, et al.
Publicado: (2016)