Cargando…
Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging
Brain network analysis using functional magnetic resonance imaging (fMRI) is a widely used technique. The first step of brain network analysis in fMRI is to detect regions of interest (ROIs). The signals from these ROIs are then used to evaluate neural networks and quantify neuronal dynamics. The tw...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012274/ https://www.ncbi.nlm.nih.gov/pubmed/32082371 http://dx.doi.org/10.1155/2019/5259643 |
_version_ | 1783496209933008896 |
---|---|
author | Veloz, Alejandro Weinstein, Alejandro Pszczolkowski, Stefan Hernández-García, Luis Olivares, Rodrigo Muñoz, Roberto Taramasco, Carla |
author_facet | Veloz, Alejandro Weinstein, Alejandro Pszczolkowski, Stefan Hernández-García, Luis Olivares, Rodrigo Muñoz, Roberto Taramasco, Carla |
author_sort | Veloz, Alejandro |
collection | PubMed |
description | Brain network analysis using functional magnetic resonance imaging (fMRI) is a widely used technique. The first step of brain network analysis in fMRI is to detect regions of interest (ROIs). The signals from these ROIs are then used to evaluate neural networks and quantify neuronal dynamics. The two main methods to identify ROIs are based on brain atlas registration and clustering. This work proposes a bioinspired method that combines both paradigms. The method, dubbed HAnt, consists of an anatomical clustering of the signal followed by an ant clustering step. The method is evaluated empirically in both in silico and in vivo experiments. The results show a significantly better performance of the proposed approach compared to other brain parcellations obtained using purely clustering-based strategies or atlas-based parcellations. |
format | Online Article Text |
id | pubmed-7012274 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-70122742020-02-20 Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging Veloz, Alejandro Weinstein, Alejandro Pszczolkowski, Stefan Hernández-García, Luis Olivares, Rodrigo Muñoz, Roberto Taramasco, Carla Comput Intell Neurosci Research Article Brain network analysis using functional magnetic resonance imaging (fMRI) is a widely used technique. The first step of brain network analysis in fMRI is to detect regions of interest (ROIs). The signals from these ROIs are then used to evaluate neural networks and quantify neuronal dynamics. The two main methods to identify ROIs are based on brain atlas registration and clustering. This work proposes a bioinspired method that combines both paradigms. The method, dubbed HAnt, consists of an anatomical clustering of the signal followed by an ant clustering step. The method is evaluated empirically in both in silico and in vivo experiments. The results show a significantly better performance of the proposed approach compared to other brain parcellations obtained using purely clustering-based strategies or atlas-based parcellations. Hindawi 2019-12-26 /pmc/articles/PMC7012274/ /pubmed/32082371 http://dx.doi.org/10.1155/2019/5259643 Text en Copyright © 2019 Alejandro Veloz et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Veloz, Alejandro Weinstein, Alejandro Pszczolkowski, Stefan Hernández-García, Luis Olivares, Rodrigo Muñoz, Roberto Taramasco, Carla Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging |
title | Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging |
title_full | Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging |
title_fullStr | Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging |
title_full_unstemmed | Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging |
title_short | Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging |
title_sort | ant colony clustering for roi identification in functional magnetic resonance imaging |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012274/ https://www.ncbi.nlm.nih.gov/pubmed/32082371 http://dx.doi.org/10.1155/2019/5259643 |
work_keys_str_mv | AT velozalejandro antcolonyclusteringforroiidentificationinfunctionalmagneticresonanceimaging AT weinsteinalejandro antcolonyclusteringforroiidentificationinfunctionalmagneticresonanceimaging AT pszczolkowskistefan antcolonyclusteringforroiidentificationinfunctionalmagneticresonanceimaging AT hernandezgarcialuis antcolonyclusteringforroiidentificationinfunctionalmagneticresonanceimaging AT olivaresrodrigo antcolonyclusteringforroiidentificationinfunctionalmagneticresonanceimaging AT munozroberto antcolonyclusteringforroiidentificationinfunctionalmagneticresonanceimaging AT taramascocarla antcolonyclusteringforroiidentificationinfunctionalmagneticresonanceimaging |