Cargando…

Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging

Brain network analysis using functional magnetic resonance imaging (fMRI) is a widely used technique. The first step of brain network analysis in fMRI is to detect regions of interest (ROIs). The signals from these ROIs are then used to evaluate neural networks and quantify neuronal dynamics. The tw...

Descripción completa

Detalles Bibliográficos
Autores principales: Veloz, Alejandro, Weinstein, Alejandro, Pszczolkowski, Stefan, Hernández-García, Luis, Olivares, Rodrigo, Muñoz, Roberto, Taramasco, Carla
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012274/
https://www.ncbi.nlm.nih.gov/pubmed/32082371
http://dx.doi.org/10.1155/2019/5259643
_version_ 1783496209933008896
author Veloz, Alejandro
Weinstein, Alejandro
Pszczolkowski, Stefan
Hernández-García, Luis
Olivares, Rodrigo
Muñoz, Roberto
Taramasco, Carla
author_facet Veloz, Alejandro
Weinstein, Alejandro
Pszczolkowski, Stefan
Hernández-García, Luis
Olivares, Rodrigo
Muñoz, Roberto
Taramasco, Carla
author_sort Veloz, Alejandro
collection PubMed
description Brain network analysis using functional magnetic resonance imaging (fMRI) is a widely used technique. The first step of brain network analysis in fMRI is to detect regions of interest (ROIs). The signals from these ROIs are then used to evaluate neural networks and quantify neuronal dynamics. The two main methods to identify ROIs are based on brain atlas registration and clustering. This work proposes a bioinspired method that combines both paradigms. The method, dubbed HAnt, consists of an anatomical clustering of the signal followed by an ant clustering step. The method is evaluated empirically in both in silico and in vivo experiments. The results show a significantly better performance of the proposed approach compared to other brain parcellations obtained using purely clustering-based strategies or atlas-based parcellations.
format Online
Article
Text
id pubmed-7012274
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-70122742020-02-20 Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging Veloz, Alejandro Weinstein, Alejandro Pszczolkowski, Stefan Hernández-García, Luis Olivares, Rodrigo Muñoz, Roberto Taramasco, Carla Comput Intell Neurosci Research Article Brain network analysis using functional magnetic resonance imaging (fMRI) is a widely used technique. The first step of brain network analysis in fMRI is to detect regions of interest (ROIs). The signals from these ROIs are then used to evaluate neural networks and quantify neuronal dynamics. The two main methods to identify ROIs are based on brain atlas registration and clustering. This work proposes a bioinspired method that combines both paradigms. The method, dubbed HAnt, consists of an anatomical clustering of the signal followed by an ant clustering step. The method is evaluated empirically in both in silico and in vivo experiments. The results show a significantly better performance of the proposed approach compared to other brain parcellations obtained using purely clustering-based strategies or atlas-based parcellations. Hindawi 2019-12-26 /pmc/articles/PMC7012274/ /pubmed/32082371 http://dx.doi.org/10.1155/2019/5259643 Text en Copyright © 2019 Alejandro Veloz et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Veloz, Alejandro
Weinstein, Alejandro
Pszczolkowski, Stefan
Hernández-García, Luis
Olivares, Rodrigo
Muñoz, Roberto
Taramasco, Carla
Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging
title Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging
title_full Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging
title_fullStr Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging
title_full_unstemmed Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging
title_short Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging
title_sort ant colony clustering for roi identification in functional magnetic resonance imaging
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012274/
https://www.ncbi.nlm.nih.gov/pubmed/32082371
http://dx.doi.org/10.1155/2019/5259643
work_keys_str_mv AT velozalejandro antcolonyclusteringforroiidentificationinfunctionalmagneticresonanceimaging
AT weinsteinalejandro antcolonyclusteringforroiidentificationinfunctionalmagneticresonanceimaging
AT pszczolkowskistefan antcolonyclusteringforroiidentificationinfunctionalmagneticresonanceimaging
AT hernandezgarcialuis antcolonyclusteringforroiidentificationinfunctionalmagneticresonanceimaging
AT olivaresrodrigo antcolonyclusteringforroiidentificationinfunctionalmagneticresonanceimaging
AT munozroberto antcolonyclusteringforroiidentificationinfunctionalmagneticresonanceimaging
AT taramascocarla antcolonyclusteringforroiidentificationinfunctionalmagneticresonanceimaging