Cargando…

Identification of amyloid plaques in the brain using an x-ray photon-counting strip detector

Brain aggregates of β amyloid (βA) protein plaques have been widely recognized as associated with many neurodegenerative diseases, and their identification can assist in the early diagnosis of Alzheimer’s disease. We investigate the feasibility of using a spectral x-ray coherent scatter system with...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghammraoui, Bahaa, Badano, Aldo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012405/
https://www.ncbi.nlm.nih.gov/pubmed/32045461
http://dx.doi.org/10.1371/journal.pone.0228720
Descripción
Sumario:Brain aggregates of β amyloid (βA) protein plaques have been widely recognized as associated with many neurodegenerative diseases, and their identification can assist in the early diagnosis of Alzheimer’s disease. We investigate the feasibility of using a spectral x-ray coherent scatter system with a silicon strip photon-counting detector for identifying brain βA protein plaques. This approach is based on differences in the structure of amyloid, white and grey matter in the brain. We simulated an energy- and angular-dispersive X-ray diffraction system with an x-ray pencil beam and Silicon strip sensor, energy-resolving detectors. The polychromatic beam is geometrically focused toward a region of interest in the brain. First, the open-source MC-GPU code for Monte Carlo transport was modified to accommodate the detector model. Second, brain phantoms with and without βA were simulated to assess the method and determine the radiation dose required to obtain acceptable statistical power. For βA targets of 3, 4 and 5 mm sizes in a 15-cm brain model, the required incident exposure was about 0.44 mR from a 60 kVp tungsten spectrum and 3.5 mm of added aluminum filtration. The results suggest that the proposed x-ray coherent scatter technique enables the use of high energy x-ray spectra and therefore has the potential to be used for accurate in vivo detection and quantification of βA in the brain within acceptable radiation dose levels.