Cargando…

NRF2 deficiency increases obesity susceptibility in a mouse menopausal model

The risk of metabolic abnormalities in menopausal women increases significantly due to the decline in estrogen level. Nuclear factor E2-related factor 2 (NRF2) is an important oxidative stress sensor that plays regulatory role in energy metabolism. Therefore, an ovariectomized menopausal model in Nr...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Xunwei, Huang, Jun, Shen, Cong, Liu, Yeling, He, Shengjie, Sun, Junquan, Yu, Bolan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012419/
https://www.ncbi.nlm.nih.gov/pubmed/32045430
http://dx.doi.org/10.1371/journal.pone.0228559
Descripción
Sumario:The risk of metabolic abnormalities in menopausal women increases significantly due to the decline in estrogen level. Nuclear factor E2-related factor 2 (NRF2) is an important oxidative stress sensor that plays regulatory role in energy metabolism. Therefore, an ovariectomized menopausal model in Nrf2-knockout (KO) mice was applied to evaluate the effect of Nrf2 deficiency on metabolism in menopausal females. The mice were divided into four groups according to their genotypes and treatments. Blood samples and bodyweights were obtained preoperatively and in the first to ninth postoperative weeks after overnight fasting. Serum levels of triglycerides (TG), total cholesterol (T-CHO), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and glucose (GLU) were measured at postoperative weeks 0, 1, 3, 5, 7, and 9. Neurotransmitter dopamine (DA) and serotonin (5-HT) was analyzed in brain tissues after sacrifice at postoperative week 9. The results demonstrated that, compared with the corresponding wild-type (WT) mice, KO ovariectomized mice had a greater bodyweight gain (P<0.01). Serum analysis showed that the serum GLU, T-CHO, and TG were significantly lower (P<0.05) but LDL was significantly higher (P<0.05) in the KO control mice than that in WT control mice. However, different from the WT counterparts, an increase in blood GLU level (P<0.05), unchanged T-CHO, TG, and HDL levels, and a significant reduction in LDL (P<0.01) was found in the KO ovariectomized mice. In addition, the level of 5-HT was significantly reduced (P<0.05) in the KO mice after ovariectomy. In conclusion, the combination of Nrf2 deletion and a decline in estrogen level induced a significant increase in bodyweight, which may be associated with their altered glucose and LDL metabolism and decreased 5-HT levels. From a clinical perspective, women with antioxidant defense deficiency may have an increased risk of metabolic abnormalities after menopause.