Cargando…

Back to the light, coevolution between vision and olfaction in the “Dark-flies” (Drosophila melanogaster)

Trade-off between vision and olfaction, the fact that investment in one correlates with decreased investment in the other, has been demonstrated by a wealth of comparative studies. However, there is still no empirical evidence suggesting how these two sensory systems coevolve, i.e. simultaneously or...

Descripción completa

Detalles Bibliográficos
Autores principales: Özer, Ismet, Carle, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012446/
https://www.ncbi.nlm.nih.gov/pubmed/32045466
http://dx.doi.org/10.1371/journal.pone.0228939
Descripción
Sumario:Trade-off between vision and olfaction, the fact that investment in one correlates with decreased investment in the other, has been demonstrated by a wealth of comparative studies. However, there is still no empirical evidence suggesting how these two sensory systems coevolve, i.e. simultaneously or alternatively. The “Dark-flies” (Drosophila melanogaster) constitute a unique model to investigate such relation since they have been reared in the dark since 1954, approximately 60 years (~1500 generations). To observe how vision and olfaction evolve, populations of Dark-flies were reared in normal lighting conditions for 1 (DF(1G)) and 65 (DF(65G)) generations. We measured the sizes of the visual (optic lobes, OLs) and olfactory (antennal lobes, ALs) primary centres, as well as the rest of the brain, and compared the results with the original and its genetically most similar strain (Oregon flies). We found that, whereas the ALs decreased in size, the OLs (together with the brain) increased in size in the Dark-flies returned back to the light, both in the DF(1G) and DF(65G). These results experimentally show that trade-off between vision and olfaction occurs simultaneously, and suggests that there are possible genetic and epigenetic processes regulating the size of both optic and antennal lobes. Furthermore, although the Dark-flies were able to mate and survive in the dark with a reduced neural investment, individuals being returned to the light seem to have been selected with reinvestment in visual capabilities despite a potential higher energetic cost.