Cargando…
Application of Numerical Weather Prediction Data to Estimate Infection Risk of Bacterial Grain Rot of Rice in Korea
This study was conducted to evaluate usefulness of numerical weather prediction data generated by the Unified Model (UM) for plant disease forecast. Using the UM06- and UM18-predicted weather data, which were released at 0600 and 1800 Universal Time Coordinated (UTC), respectively, by the Korea Mete...
Autores principales: | Kim, Hyo-suk, Do, Ki Seok, Park, Joo Hyeon, Kang, Wee Soo, Lee, Yong Hwan, Park, Eun Woo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Plant Pathology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012571/ https://www.ncbi.nlm.nih.gov/pubmed/32089661 http://dx.doi.org/10.5423/PPJ.OA.11.2019.0281 |
Ejemplares similares
-
BGRcast: A Disease Forecast Model to Support Decision-making for Chemical Sprays to Control Bacterial Grain Rot of Rice
por: Lee, Yong Hwan, et al.
Publicado: (2015) -
QTLs for Resistance to Major Rice Diseases Exacerbated by Global Warming: Brown Spot, Bacterial Seedling Rot, and Bacterial Grain Rot
por: Mizobuchi, Ritsuko, et al.
Publicado: (2016) -
Mapping a quantitative trait locus for resistance to bacterial grain rot in rice
por: Mizobuchi, Ritsuko, et al.
Publicado: (2013) -
MBCAST: A Forecast Model for Marssonina Blotch of Apple in Korea
por: Kim, Hyo-suk, et al.
Publicado: (2019) -
Existence of multiple scales in uncertainty of numerical weather prediction
por: Song, Hyo-Jong
Publicado: (2019)