Cargando…
Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot
Once the periodic properties of elements were unveiled, chemical behaviour could be understood in terms of the valence of atoms. Ideally, this rationale would extend to quantum dots, and quantum computation could be performed by merely controlling the outer-shell electrons of dot-based qubits. Imper...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012832/ https://www.ncbi.nlm.nih.gov/pubmed/32047151 http://dx.doi.org/10.1038/s41467-019-14053-w |
_version_ | 1783496284378759168 |
---|---|
author | Leon, R. C. C. Yang, C. H. Hwang, J. C. C. Lemyre, J. Camirand Tanttu, T. Huang, W. Chan, K. W. Tan, K. Y. Hudson, F. E. Itoh, K. M. Morello, A. Laucht, A. Pioro-Ladrière, M. Saraiva, A. Dzurak, A. S. |
author_facet | Leon, R. C. C. Yang, C. H. Hwang, J. C. C. Lemyre, J. Camirand Tanttu, T. Huang, W. Chan, K. W. Tan, K. Y. Hudson, F. E. Itoh, K. M. Morello, A. Laucht, A. Pioro-Ladrière, M. Saraiva, A. Dzurak, A. S. |
author_sort | Leon, R. C. C. |
collection | PubMed |
description | Once the periodic properties of elements were unveiled, chemical behaviour could be understood in terms of the valence of atoms. Ideally, this rationale would extend to quantum dots, and quantum computation could be performed by merely controlling the outer-shell electrons of dot-based qubits. Imperfections in semiconductor materials disrupt this analogy, so real devices seldom display a systematic many-electron arrangement. We demonstrate here an electrostatically confined quantum dot that reveals a well defined shell structure. We observe four shells (31 electrons) with multiplicities given by spin and valley degrees of freedom. Various fillings containing a single valence electron—namely 1, 5, 13 and 25 electrons—are found to be potential qubits. An integrated micromagnet allows us to perform electrically-driven spin resonance (EDSR), leading to faster Rabi rotations and higher fidelity single qubit gates at higher shell states. We investigate the impact of orbital excitations on single qubits as a function of the dot deformation and exploit it for faster qubit control. |
format | Online Article Text |
id | pubmed-7012832 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-70128322020-02-13 Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot Leon, R. C. C. Yang, C. H. Hwang, J. C. C. Lemyre, J. Camirand Tanttu, T. Huang, W. Chan, K. W. Tan, K. Y. Hudson, F. E. Itoh, K. M. Morello, A. Laucht, A. Pioro-Ladrière, M. Saraiva, A. Dzurak, A. S. Nat Commun Article Once the periodic properties of elements were unveiled, chemical behaviour could be understood in terms of the valence of atoms. Ideally, this rationale would extend to quantum dots, and quantum computation could be performed by merely controlling the outer-shell electrons of dot-based qubits. Imperfections in semiconductor materials disrupt this analogy, so real devices seldom display a systematic many-electron arrangement. We demonstrate here an electrostatically confined quantum dot that reveals a well defined shell structure. We observe four shells (31 electrons) with multiplicities given by spin and valley degrees of freedom. Various fillings containing a single valence electron—namely 1, 5, 13 and 25 electrons—are found to be potential qubits. An integrated micromagnet allows us to perform electrically-driven spin resonance (EDSR), leading to faster Rabi rotations and higher fidelity single qubit gates at higher shell states. We investigate the impact of orbital excitations on single qubits as a function of the dot deformation and exploit it for faster qubit control. Nature Publishing Group UK 2020-02-11 /pmc/articles/PMC7012832/ /pubmed/32047151 http://dx.doi.org/10.1038/s41467-019-14053-w Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Leon, R. C. C. Yang, C. H. Hwang, J. C. C. Lemyre, J. Camirand Tanttu, T. Huang, W. Chan, K. W. Tan, K. Y. Hudson, F. E. Itoh, K. M. Morello, A. Laucht, A. Pioro-Ladrière, M. Saraiva, A. Dzurak, A. S. Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot |
title | Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot |
title_full | Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot |
title_fullStr | Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot |
title_full_unstemmed | Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot |
title_short | Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot |
title_sort | coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012832/ https://www.ncbi.nlm.nih.gov/pubmed/32047151 http://dx.doi.org/10.1038/s41467-019-14053-w |
work_keys_str_mv | AT leonrcc coherentspincontrolofspdandfelectronsinasiliconquantumdot AT yangch coherentspincontrolofspdandfelectronsinasiliconquantumdot AT hwangjcc coherentspincontrolofspdandfelectronsinasiliconquantumdot AT lemyrejcamirand coherentspincontrolofspdandfelectronsinasiliconquantumdot AT tanttut coherentspincontrolofspdandfelectronsinasiliconquantumdot AT huangw coherentspincontrolofspdandfelectronsinasiliconquantumdot AT chankw coherentspincontrolofspdandfelectronsinasiliconquantumdot AT tanky coherentspincontrolofspdandfelectronsinasiliconquantumdot AT hudsonfe coherentspincontrolofspdandfelectronsinasiliconquantumdot AT itohkm coherentspincontrolofspdandfelectronsinasiliconquantumdot AT morelloa coherentspincontrolofspdandfelectronsinasiliconquantumdot AT lauchta coherentspincontrolofspdandfelectronsinasiliconquantumdot AT pioroladrierem coherentspincontrolofspdandfelectronsinasiliconquantumdot AT saraivaa coherentspincontrolofspdandfelectronsinasiliconquantumdot AT dzurakas coherentspincontrolofspdandfelectronsinasiliconquantumdot |