Cargando…

Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode

To achieve good rate capability of lithium metal anodes for high-energy-density batteries, one fundamental challenge is the slow lithium diffusion at the interface. Here we report an interpenetrated, three-dimensional lithium metal/lithium tin alloy nanocomposite foil realized by a simple calenderin...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Mintao, Kang, Sujin, Wang, Li, Lee, Hyun-Wook, Zheng, Guangyuan Wesley, Cui, Yi, Sun, Yongming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012843/
https://www.ncbi.nlm.nih.gov/pubmed/32047149
http://dx.doi.org/10.1038/s41467-020-14550-3
Descripción
Sumario:To achieve good rate capability of lithium metal anodes for high-energy-density batteries, one fundamental challenge is the slow lithium diffusion at the interface. Here we report an interpenetrated, three-dimensional lithium metal/lithium tin alloy nanocomposite foil realized by a simple calendering and folding process of lithium and tin foils, and spontaneous alloying reactions. The strong affinity between the metallic lithium and lithium tin alloy as mixed electronic and ionic conducting networks, and their abundant interfaces enable ultrafast charger diffusion across the entire electrode. We demonstrate that a lithium/lithium tin alloy foil electrode sustains stable lithium stripping/plating under 30 mA cm(−2) and 5 mAh cm(−2) with a very low overpotential of 20 mV for 200 cycles in a commercial carbonate electrolyte. Cycled under 6 C (6.6 mA cm(−2)), a 1.0 mAh cm(−2) LiNi(0.6)Co(0.2)Mn(0.2)O(2) electrode maintains a substantial 74% of its capacity by pairing with such anode.