Cargando…

Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode

To achieve good rate capability of lithium metal anodes for high-energy-density batteries, one fundamental challenge is the slow lithium diffusion at the interface. Here we report an interpenetrated, three-dimensional lithium metal/lithium tin alloy nanocomposite foil realized by a simple calenderin...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Mintao, Kang, Sujin, Wang, Li, Lee, Hyun-Wook, Zheng, Guangyuan Wesley, Cui, Yi, Sun, Yongming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012843/
https://www.ncbi.nlm.nih.gov/pubmed/32047149
http://dx.doi.org/10.1038/s41467-020-14550-3
_version_ 1783496287015927808
author Wan, Mintao
Kang, Sujin
Wang, Li
Lee, Hyun-Wook
Zheng, Guangyuan Wesley
Cui, Yi
Sun, Yongming
author_facet Wan, Mintao
Kang, Sujin
Wang, Li
Lee, Hyun-Wook
Zheng, Guangyuan Wesley
Cui, Yi
Sun, Yongming
author_sort Wan, Mintao
collection PubMed
description To achieve good rate capability of lithium metal anodes for high-energy-density batteries, one fundamental challenge is the slow lithium diffusion at the interface. Here we report an interpenetrated, three-dimensional lithium metal/lithium tin alloy nanocomposite foil realized by a simple calendering and folding process of lithium and tin foils, and spontaneous alloying reactions. The strong affinity between the metallic lithium and lithium tin alloy as mixed electronic and ionic conducting networks, and their abundant interfaces enable ultrafast charger diffusion across the entire electrode. We demonstrate that a lithium/lithium tin alloy foil electrode sustains stable lithium stripping/plating under 30 mA cm(−2) and 5 mAh cm(−2) with a very low overpotential of 20 mV for 200 cycles in a commercial carbonate electrolyte. Cycled under 6 C (6.6 mA cm(−2)), a 1.0 mAh cm(−2) LiNi(0.6)Co(0.2)Mn(0.2)O(2) electrode maintains a substantial 74% of its capacity by pairing with such anode.
format Online
Article
Text
id pubmed-7012843
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-70128432020-02-13 Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode Wan, Mintao Kang, Sujin Wang, Li Lee, Hyun-Wook Zheng, Guangyuan Wesley Cui, Yi Sun, Yongming Nat Commun Article To achieve good rate capability of lithium metal anodes for high-energy-density batteries, one fundamental challenge is the slow lithium diffusion at the interface. Here we report an interpenetrated, three-dimensional lithium metal/lithium tin alloy nanocomposite foil realized by a simple calendering and folding process of lithium and tin foils, and spontaneous alloying reactions. The strong affinity between the metallic lithium and lithium tin alloy as mixed electronic and ionic conducting networks, and their abundant interfaces enable ultrafast charger diffusion across the entire electrode. We demonstrate that a lithium/lithium tin alloy foil electrode sustains stable lithium stripping/plating under 30 mA cm(−2) and 5 mAh cm(−2) with a very low overpotential of 20 mV for 200 cycles in a commercial carbonate electrolyte. Cycled under 6 C (6.6 mA cm(−2)), a 1.0 mAh cm(−2) LiNi(0.6)Co(0.2)Mn(0.2)O(2) electrode maintains a substantial 74% of its capacity by pairing with such anode. Nature Publishing Group UK 2020-02-11 /pmc/articles/PMC7012843/ /pubmed/32047149 http://dx.doi.org/10.1038/s41467-020-14550-3 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Wan, Mintao
Kang, Sujin
Wang, Li
Lee, Hyun-Wook
Zheng, Guangyuan Wesley
Cui, Yi
Sun, Yongming
Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode
title Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode
title_full Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode
title_fullStr Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode
title_full_unstemmed Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode
title_short Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode
title_sort mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012843/
https://www.ncbi.nlm.nih.gov/pubmed/32047149
http://dx.doi.org/10.1038/s41467-020-14550-3
work_keys_str_mv AT wanmintao mechanicalrollingformationofinterpenetratedlithiummetallithiumtinalloyfoilforultrahighratebatteryanode
AT kangsujin mechanicalrollingformationofinterpenetratedlithiummetallithiumtinalloyfoilforultrahighratebatteryanode
AT wangli mechanicalrollingformationofinterpenetratedlithiummetallithiumtinalloyfoilforultrahighratebatteryanode
AT leehyunwook mechanicalrollingformationofinterpenetratedlithiummetallithiumtinalloyfoilforultrahighratebatteryanode
AT zhengguangyuanwesley mechanicalrollingformationofinterpenetratedlithiummetallithiumtinalloyfoilforultrahighratebatteryanode
AT cuiyi mechanicalrollingformationofinterpenetratedlithiummetallithiumtinalloyfoilforultrahighratebatteryanode
AT sunyongming mechanicalrollingformationofinterpenetratedlithiummetallithiumtinalloyfoilforultrahighratebatteryanode