Cargando…
Incretin accelerates platelet-derived growth factor-BB-induced osteoblast migration via protein kinase A: The upregulation of p38 MAP kinase
Incretins, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), secreted from enteroendocrine cells after food ingestion, are currently recognized to regulate glucose metabolism through insulin secretion. We previously demonstrated that platelet-derived g...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012849/ https://www.ncbi.nlm.nih.gov/pubmed/32047216 http://dx.doi.org/10.1038/s41598-020-59392-7 |
Sumario: | Incretins, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), secreted from enteroendocrine cells after food ingestion, are currently recognized to regulate glucose metabolism through insulin secretion. We previously demonstrated that platelet-derived growth factor-BB (PDGF-BB) induces the migration of osteoblast-like MC3T3-E1 cells through mitogen-activated protein (MAP) kinases, including p38 MAP kinase. In the present study, we investigated whether or not incretins affect the osteoblast migration. The PDGF-BB-induced cell migration was significantly reinforced by GLP-1, GIP or cAMP analogues in MC3T3-E1 cells and normal human osteoblasts. The upregulated migration by GLP-1 or cAMP analogues was suppressed by H89, an inhibitor of protein kinase A. The amplification by GLP-1 of migration induced by PDGF-BB was almost completely reduced by SB203580, a p38 MAP kinase inhibitor in MC3T3-E1 cells and normal human osteoblasts. In addition, GIP markedly strengthened the PDGF-BB-induced phosphorylation of p38 MAP kinase. Exendin-4, a GLP-1 analogue, induced Rho A expression and its translocation from cytoplasm to plasma membranes in osteoblasts at the epiphyseal lines of developing mouse femurs in vivo. These results strongly suggest that incretins accelerates the PDGF-BB-induced migration of osteoblasts via protein kinase A, and the up-regulation of p38 MAP kinase is involved in this acceleration. Our findings may highlight the novel potential of incretins to bone physiology and therapeutic strategy against bone repair. |
---|