Cargando…

Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers

Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhong, Yufei, Causa’, Martina, Moore, Gareth John, Krauspe, Philipp, Xiao, Bo, Günther, Florian, Kublitski, Jonas, Shivhare, Rishi, Benduhn, Johannes, BarOr, Eyal, Mukherjee, Subhrangsu, Yallum, Kaila M., Réhault, Julien, Mannsfeld, Stefan C. B., Neher, Dieter, Richter, Lee J., DeLongchamp, Dean M., Ortmann, Frank, Vandewal, Koen, Zhou, Erjun, Banerji, Natalie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012859/
https://www.ncbi.nlm.nih.gov/pubmed/32047157
http://dx.doi.org/10.1038/s41467-020-14549-w
_version_ 1783496291039313920
author Zhong, Yufei
Causa’, Martina
Moore, Gareth John
Krauspe, Philipp
Xiao, Bo
Günther, Florian
Kublitski, Jonas
Shivhare, Rishi
Benduhn, Johannes
BarOr, Eyal
Mukherjee, Subhrangsu
Yallum, Kaila M.
Réhault, Julien
Mannsfeld, Stefan C. B.
Neher, Dieter
Richter, Lee J.
DeLongchamp, Dean M.
Ortmann, Frank
Vandewal, Koen
Zhou, Erjun
Banerji, Natalie
author_facet Zhong, Yufei
Causa’, Martina
Moore, Gareth John
Krauspe, Philipp
Xiao, Bo
Günther, Florian
Kublitski, Jonas
Shivhare, Rishi
Benduhn, Johannes
BarOr, Eyal
Mukherjee, Subhrangsu
Yallum, Kaila M.
Réhault, Julien
Mannsfeld, Stefan C. B.
Neher, Dieter
Richter, Lee J.
DeLongchamp, Dean M.
Ortmann, Frank
Vandewal, Koen
Zhou, Erjun
Banerji, Natalie
author_sort Zhong, Yufei
collection PubMed
description Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff.
format Online
Article
Text
id pubmed-7012859
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-70128592020-02-13 Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers Zhong, Yufei Causa’, Martina Moore, Gareth John Krauspe, Philipp Xiao, Bo Günther, Florian Kublitski, Jonas Shivhare, Rishi Benduhn, Johannes BarOr, Eyal Mukherjee, Subhrangsu Yallum, Kaila M. Réhault, Julien Mannsfeld, Stefan C. B. Neher, Dieter Richter, Lee J. DeLongchamp, Dean M. Ortmann, Frank Vandewal, Koen Zhou, Erjun Banerji, Natalie Nat Commun Article Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff. Nature Publishing Group UK 2020-02-11 /pmc/articles/PMC7012859/ /pubmed/32047157 http://dx.doi.org/10.1038/s41467-020-14549-w Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Zhong, Yufei
Causa’, Martina
Moore, Gareth John
Krauspe, Philipp
Xiao, Bo
Günther, Florian
Kublitski, Jonas
Shivhare, Rishi
Benduhn, Johannes
BarOr, Eyal
Mukherjee, Subhrangsu
Yallum, Kaila M.
Réhault, Julien
Mannsfeld, Stefan C. B.
Neher, Dieter
Richter, Lee J.
DeLongchamp, Dean M.
Ortmann, Frank
Vandewal, Koen
Zhou, Erjun
Banerji, Natalie
Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers
title Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers
title_full Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers
title_fullStr Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers
title_full_unstemmed Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers
title_short Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers
title_sort sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012859/
https://www.ncbi.nlm.nih.gov/pubmed/32047157
http://dx.doi.org/10.1038/s41467-020-14549-w
work_keys_str_mv AT zhongyufei subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT causamartina subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT mooregarethjohn subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT krauspephilipp subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT xiaobo subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT guntherflorian subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT kublitskijonas subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT shivharerishi subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT benduhnjohannes subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT baroreyal subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT mukherjeesubhrangsu subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT yallumkailam subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT rehaultjulien subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT mannsfeldstefancb subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT neherdieter subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT richterleej subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT delongchampdeanm subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT ortmannfrank subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT vandewalkoen subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT zhouerjun subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers
AT banerjinatalie subpicosecondchargetransferatnearzerodrivingforceinpolymernonfullereneacceptorblendsandbilayers