Cargando…

Acoustic tracheal rupture provides insights into larval mosquito respiration

Acoustic larviciding (AL) occurs by exposing mosquito larvae to acoustic energy that ruptures their dorsal tracheal trunks (DTTs) by the expulsion of gas bubbles into the body. In studying this technique, we serendipitously identified undescribed anatomical and physiological respiratory features. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Nyberg, Herbert J., Muto, Kunihiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012908/
https://www.ncbi.nlm.nih.gov/pubmed/32047234
http://dx.doi.org/10.1038/s41598-020-59321-8
Descripción
Sumario:Acoustic larviciding (AL) occurs by exposing mosquito larvae to acoustic energy that ruptures their dorsal tracheal trunks (DTTs) by the expulsion of gas bubbles into the body. In studying this technique, we serendipitously identified undescribed anatomical and physiological respiratory features. The classical theory of respiration is that the siphon and DTTs play obligate roles in respiration. Our results contradict the accepted theory that culicine larvae respire via atmospheric gas exchange. We identified an undescribed tracheal occlusion (TO) at the posterior extremities the DTTs. The TOs appear necessary for the acoustic rupture of DTTs; this constriction prevents the escape of energized gas from the siphon and allows the tracheal system to be pressurized. With a pressurized isolated tracheal system, metabolic gas exchange directly with the atmosphere is unlikely and could mostly occur through the chitin and setae. Future studies are needed to explore respiration and elucidate the mechanisms of oxygen absorption and carbon dioxide elimination.