Cargando…

Genome analysis provides insights into microaerobic toluene-degradation pathway of Zoogloea oleivorans Buc(T)

Zoogloea oleivorans, capable of using toluene as a sole source of carbon and energy, was earlier found to be an active degrader under microaerobic conditions in aquifer samples. To uncover the genetic background of the ability of microaerobic toluene degradation in Z. oleivorans, the whole-genome se...

Descripción completa

Detalles Bibliográficos
Autores principales: Táncsics, András, Farkas, Milán, Horváth, Balázs, Maróti, Gergely, Bradford, Lauren M., Lueders, Tillmann, Kriszt, Balázs
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012976/
https://www.ncbi.nlm.nih.gov/pubmed/31659381
http://dx.doi.org/10.1007/s00203-019-01743-8
Descripción
Sumario:Zoogloea oleivorans, capable of using toluene as a sole source of carbon and energy, was earlier found to be an active degrader under microaerobic conditions in aquifer samples. To uncover the genetic background of the ability of microaerobic toluene degradation in Z. oleivorans, the whole-genome sequence of the type strain Buc(T) was revealed. Metatranscriptomic sequence reads, originated from a previous SIP study on microaerobic toluene degradation, were mapped on the genome. The genome (5.68 Mb) had a mean G + C content of 62.5%, 5005 protein coding gene sequences and 80 RNA genes. Annotation predicted that 66 genes were involved in the metabolism of aromatic compounds. Genome analysis revealed the presence of a cluster with genes coding for a multicomponent phenol-hydroxylase system and a complete catechol meta-cleavage pathway. Another cluster flanked by mobile-element protein coding genes coded a partial catechol meta-cleavage pathway including a subfamily I.2.C-type extradiol dioxygenase. Analysis of metatranscriptomic data of a microaerobic toluene-degrading enrichment, containing Z .  oleivorans as an active-toluene degrader revealed that a toluene dioxygenase-like enzyme was responsible for the ring-hydroxylation, while enzymes of the partial catechol meta-cleavage pathway coding cluster were responsible for further degradation of the aromatic ring under microaerobic conditions. This further advances our understanding of aromatic hydrocarbon degradation between fully oxic and strictly anoxic conditions.