Cargando…
FOLFOX treatment response prediction in metastatic or recurrent colorectal cancer patients via machine learning algorithms
Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5‐FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta‐analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresp...
Autores principales: | Lu, Wei, Fu, Dongliang, Kong, Xiangxing, Huang, Zhiheng, Hwang, Maxwell, Zhu, Yingshuang, Chen, Liubo, Jiang, Kai, Li, Xinlin, Wu, Yihua, Li, Jun, Yuan, Ying, Ding, Kefeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013065/ https://www.ncbi.nlm.nih.gov/pubmed/31893575 http://dx.doi.org/10.1002/cam4.2786 |
Ejemplares similares
-
Identifying Stage II Colorectal Cancer Recurrence Associated Genes by Microarray Meta-Analysis and Building Predictive Models with Machine Learning Algorithms
por: Lu, Wei, et al.
Publicado: (2021) -
The McCAVE Trial: Vanucizumab plus mFOLFOX‐6 Versus Bevacizumab plus mFOLFOX‐6 in Patients with Previously Untreated Metastatic Colorectal Carcinoma (mCRC)
por: Bendell, Johanna C., et al.
Publicado: (2019) -
Prognostic Risk Model of Immune-Related Genes in Colorectal Cancer
por: Qian, Yucheng, et al.
Publicado: (2021) -
Predictors and Risk Factors of Pathologic Complete Response Following Neoadjuvant Chemoradiotherapy for Rectal Cancer: A Population-Based Analysis
por: Tan, Yinuo, et al.
Publicado: (2019) -
A predictive model for early recurrence of colorectal-cancer liver metastases based on clinical parameters
por: Dai, Siqi, et al.
Publicado: (2021)