Cargando…

Current Measurement Transducer Based on Current-To-Voltage-To-Frequency Converting Ring Oscillator with Cascade Bias Circuit

We propose a ring oscillator (RO) based current-to-voltage-to-frequency (I–V–F) converting current transducer with a cascade bias circuit. The I–V–F converting scheme guarantees highly stable biasing against RO, with a rail-to-rail output operation. This device was fabricated using National NanoFab...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Jongha, Park, Jung-Hyun, Jung, Seong-Ook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013604/
https://www.ncbi.nlm.nih.gov/pubmed/31952300
http://dx.doi.org/10.3390/s20020493
Descripción
Sumario:We propose a ring oscillator (RO) based current-to-voltage-to-frequency (I–V–F) converting current transducer with a cascade bias circuit. The I–V–F converting scheme guarantees highly stable biasing against RO, with a rail-to-rail output operation. This device was fabricated using National NanoFab Center (NNFC) 180 nm complementary metal-oxide-semiconductor (CMOS) technology, which achieves a current resolution of 1 nA in a measurement range up to 200 nA. A noise floor of 11.8 pA/√Hz, maximum differential nonlinearity (DNL) of 0.15 in 1 nA steps, and rail-to-rail output with a 1.8 V power supply is achieved. The proposed transducer can be effectively applied to bio-sensing devices requiring a compact area and low power consumption with a low current output. The fabricated structure can be applied to monolithic-three-dimensional integration with a bio-sensing device.