Cargando…
A Personalized Diagnosis Method to Detect Faults in a Bearing Based on Acceleration Sensors and an FEM Simulation Driving Support Vector Machine
Classification of faults in mechanical components using machine learning is a hot topic in the field of science and engineering. Generally, every real-world running mechanical system exhibits personalized vibration behaviors that can be measured with acceleration sensors. However, faulty samples of...
Autores principales: | Liu, Xiaoyang, Huang, Haizhou, Xiang, Jiawei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013674/ https://www.ncbi.nlm.nih.gov/pubmed/31940822 http://dx.doi.org/10.3390/s20020420 |
Ejemplares similares
-
Rolling Bearing Fault Diagnosis Based on Support Vector Machine Optimized by Improved Grey Wolf Algorithm
por: Shen, Weijie, et al.
Publicado: (2023) -
Time-Shift Multiscale Fuzzy Entropy and Laplacian Support Vector Machine Based Rolling Bearing Fault Diagnosis
por: Zhu, Xiaolong, et al.
Publicado: (2018) -
Bearing Fault Diagnosis Method Based on RCMFDE-SPLR and Ocean Predator Algorithm Optimizing Support Vector Machine
por: Yi, Mingxiu, et al.
Publicado: (2022) -
Sensor Fault Diagnosis Method Based on α-Grey Wolf Optimization-Support Vector Machine
por: Cheng, Xuezhen, et al.
Publicado: (2021) -
Bearing Fault Diagnosis Using a Particle Swarm Optimization-Least Squares Wavelet Support Vector Machine Classifier
por: Van, Mien, et al.
Publicado: (2020)