1-Point RANSAC UKF with Inverse Covariance Intersection for Fault Tolerance

The fault tolerance estimation method is proposed to maintain reliable correspondences between sensor data and estimation performance regardless of the number of valid measurements. The proposed method is based on the 1-point random sample consensus (RANSAC) unscented Kalman filter (UKF), and the in...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Sun Young, Kang, Chang Ho, Song, Jin Woo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013737/
https://www.ncbi.nlm.nih.gov/pubmed/31936384
http://dx.doi.org/10.3390/s20020353
Descripción
Sumario:The fault tolerance estimation method is proposed to maintain reliable correspondences between sensor data and estimation performance regardless of the number of valid measurements. The proposed method is based on the 1-point random sample consensus (RANSAC) unscented Kalman filter (UKF), and the inverse covariance intersection (ICI)-based data fusion method is added to the update process in the proposed algorithm. To verify the performance of the proposed algorithm, two analyses are performed with respect to the degree of measurement error reduction and accuracy of generated information. In addition, experiments are conducted using the dead reckoning (DR)/global positioning system (GPS) navigation system with a barometric altimeter to confirm the performance of fault tolerance in the altitude. It is confirmed that the proposed algorithm maintains estimation performance when there are not enough valid measurements.