Cargando…
Analysis of Relevant Features from Photoplethysmographic Signals for Atrial Fibrillation Classification
Atrial Fibrillation (AF) is the most common cardiac arrhythmia found in clinical practice. It affects an estimated 33.5 million people, representing approximately 0.5% of the world’s population. Electrocardiogram (ECG) is the main diagnostic criterion for AF. Recently, photoplethysmography (PPG) has...
Autores principales: | Millán, César A., Girón, Nathalia A., Lopez, Diego M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013739/ https://www.ncbi.nlm.nih.gov/pubmed/31941071 http://dx.doi.org/10.3390/ijerph17020498 |
Ejemplares similares
-
Contact‐Free Screening of Atrial Fibrillation by a Smartphone Using Facial Pulsatile Photoplethysmographic Signals
por: Yan, Bryan P., et al.
Publicado: (2018) -
Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study
por: Kwon, Soonil, et al.
Publicado: (2019) -
Determine atrial fibrillation burden with a photoplethysmographic mobile sensor: the atrial fibrillation burden trial: detection and quantification of episodes of atrial fibrillation using a cloud analytics service connected to a wearable with photoplethysmographic sensor
por: Reissenberger, Pamela, et al.
Publicado: (2023) -
Cardiodiagnostics Based on Photoplethysmographic Signals
por: Georgieva-Tsaneva, Galya, et al.
Publicado: (2022) -
Multi-stage sleep classification using photoplethysmographic sensor
por: Motin, Mohammod Abdul, et al.
Publicado: (2023)