Cargando…
Automatic Hierarchical Classification of Kelps Using Deep Residual Features
Across the globe, remote image data is rapidly being collected for the assessment of benthic communities from shallow to extremely deep waters on continental slopes to the abyssal seas. Exploiting this data is presently limited by the time it takes for experts to identify organisms found in these im...
Autores principales: | Mahmood, Ammar, Ospina, Ana Giraldo, Bennamoun, Mohammed, An, Senjian, Sohel, Ferdous, Boussaid, Farid, Hovey, Renae, Fisher, Robert B., Kendrick, Gary A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013955/ https://www.ncbi.nlm.nih.gov/pubmed/31941132 http://dx.doi.org/10.3390/s20020447 |
Ejemplares similares
-
Depth moderates loss of marine foundation species after an extreme marine heatwave: could deep temperate reefs act as a refuge?
por: Giraldo-Ospina, Ana, et al.
Publicado: (2020) -
Machine learning risk prediction model for acute coronary syndrome and death from use of non-steroidal anti-inflammatory drugs in administrative data
por: Lu, Juan, et al.
Publicado: (2021) -
Transport of pilgrims during Hajj: Evidence from a discrete event simulation study
por: Owaidah, Almoaid, et al.
Publicado: (2023) -
A review of protocols for the experimental release of kelp (Laminariales) zoospores
por: Alsuwaiyan, Nahlah A., et al.
Publicado: (2019) -
Automatic Pavement Defect Detection and Classification Using RGB-Thermal Images Based on Hierarchical Residual Attention Network
por: Chen, Cheng, et al.
Publicado: (2022)