Cargando…
Reservoir Dam Surface Deformation Monitoring by Differential GB-InSAR Based on Image Subsets
Ground-based synthetic aperture radar interferometry (GB-InSAR) enables the continuous monitoring of areal deformation and can thus provide near-real-time control of the overall deformation state of dam surfaces. In the continuous small-scale deformation monitoring of a reservoir dam structure by GB...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014032/ https://www.ncbi.nlm.nih.gov/pubmed/31936713 http://dx.doi.org/10.3390/s20020396 |
Sumario: | Ground-based synthetic aperture radar interferometry (GB-InSAR) enables the continuous monitoring of areal deformation and can thus provide near-real-time control of the overall deformation state of dam surfaces. In the continuous small-scale deformation monitoring of a reservoir dam structure by GB-InSAR, the ground-based synthetic aperture radar (GB-SAR) image acquisition may be interrupted by multiple interfering factors, such as severe changes in the meteorological conditions of the monitoring area and radar equipment failures. As a result, the observed phases before and after the interruption cannot be directly connected, and the original spatiotemporal datum for the deformation measurement is lost, making the follow-up monitoring results unreliable. In this study, a multi-threshold strategy was first adopted to select coherent point targets (CPTs) by using successive GB-SAR image sequences. Then, we developed differential GB-InSAR with image subsets based on the CPTs to solve the dam surface deformation before and after aberrant interruptions. Finally, a deformation monitoring experiment was performed on an actual large reservoir dam. The effectiveness and accuracy of the abovementioned method were verified by comparing the results with measurements by a reversed pendulum monitoring system. |
---|