Cargando…
A Multi-Task Framework for Facial Attributes Classification through End-to-End Face Parsing and Deep Convolutional Neural Networks
Human face image analysis is an active research area within computer vision. In this paper we propose a framework for face image analysis, addressing three challenging problems of race, age, and gender recognition through face parsing. We manually labeled face images for training an end-to-end face...
Autores principales: | Khan, Khalil, Attique, Muhammad, Khan, Rehan Ullah, Syed, Ikram, Chung, Tae-Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014093/ https://www.ncbi.nlm.nih.gov/pubmed/31935996 http://dx.doi.org/10.3390/s20020328 |
Ejemplares similares
-
A Unified Framework for Head Pose, Age and Gender Classification through End-to-End Face Segmentation
por: Khan, Khalil, et al.
Publicado: (2019) -
End-to-end dialogue structure parsing on multi-floor dialogue based on multi-task learning
por: Kawano, Seiya, et al.
Publicado: (2023) -
Face-mask-aware Facial Expression Recognition based on Face Parsing and Vision Transformer
por: Yang, Bo, et al.
Publicado: (2022) -
Face Attribute Estimation Using Multi-Task Convolutional Neural Network
por: Kawai, Hiroya, et al.
Publicado: (2022) -
Parsing the Mechanisms Underlying Ingroup Facial Resemblance
por: Bjornsdottir, R. Thora, et al.
Publicado: (2021)