Cargando…

Hydrogen Production from the LOHC Perhydro-Dibenzyl-Toluene and Purification Using a 5 µm PdAg-Membrane in a Coupled Microstructured System

Hydrogen bound in organic liquid hydrogen carriers (LOHC) such as dibenzyl-toluene enables simple and safe handling as well as long-term storage. This idea is particularly interesting in the context of the energy transition, where hydrogen is considered a key energy carrier. The LOHC technology serv...

Descripción completa

Detalles Bibliográficos
Autores principales: Wunsch, Alexander, Berg, Tatjana, Pfeifer, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014189/
https://www.ncbi.nlm.nih.gov/pubmed/31936293
http://dx.doi.org/10.3390/ma13020277
_version_ 1783496572334505984
author Wunsch, Alexander
Berg, Tatjana
Pfeifer, Peter
author_facet Wunsch, Alexander
Berg, Tatjana
Pfeifer, Peter
author_sort Wunsch, Alexander
collection PubMed
description Hydrogen bound in organic liquid hydrogen carriers (LOHC) such as dibenzyl-toluene enables simple and safe handling as well as long-term storage. This idea is particularly interesting in the context of the energy transition, where hydrogen is considered a key energy carrier. The LOHC technology serves as a storage between volatile energy and locally and timely independent consumption. Depending on the type of application, decisive specifications are placed on the hydrogen purity. In the product gas from dehydrogenation, however, concentrations of 100 to a few 1000 ppm can be found from low boiling substances, which partly originate from the production of the LOHC material, but also from the decomposition and evaporation of the LOHC molecules in the course of the enormous volume expansion due to hydrogen release. For the removal of undesired traces in the LOHC material, a pre-treatment and storage under protective gas is necessary. For purification, the use of Pd-based membranes might be useful, which makes these steps less important or even redundant. Heat supply and phase contacting of the liquid LOHC and catalyst is also crucial for the process. Within the contribution, the first results from a coupled microstructured system—consisting of a radial flow reactor unit and membrane separation unit—are shown. In a first step, the 5 µm thick PdAg-membrane was characterized and a high Sieverts exponent of 0.9 was determined, indicating adsorption/desorption driven permeation. It can be demonstrated that hydrogen is first released with high catalyst-related productivity in the reactor system and afterwards separated and purified. Within the framework of limited analytics, we found that by using a Pd-based membrane, a quality of 5.0 (99.999% purity) or higher can be achieved. Furthermore, it was found that after only 8 hours, the membrane can lose up to 30% of its performance when exposed to the slightly contaminated product gas from the dehydrogenation process. However, the separation efficiency can almost completely be restored by the treatment with pure hydrogen.
format Online
Article
Text
id pubmed-7014189
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70141892020-03-09 Hydrogen Production from the LOHC Perhydro-Dibenzyl-Toluene and Purification Using a 5 µm PdAg-Membrane in a Coupled Microstructured System Wunsch, Alexander Berg, Tatjana Pfeifer, Peter Materials (Basel) Article Hydrogen bound in organic liquid hydrogen carriers (LOHC) such as dibenzyl-toluene enables simple and safe handling as well as long-term storage. This idea is particularly interesting in the context of the energy transition, where hydrogen is considered a key energy carrier. The LOHC technology serves as a storage between volatile energy and locally and timely independent consumption. Depending on the type of application, decisive specifications are placed on the hydrogen purity. In the product gas from dehydrogenation, however, concentrations of 100 to a few 1000 ppm can be found from low boiling substances, which partly originate from the production of the LOHC material, but also from the decomposition and evaporation of the LOHC molecules in the course of the enormous volume expansion due to hydrogen release. For the removal of undesired traces in the LOHC material, a pre-treatment and storage under protective gas is necessary. For purification, the use of Pd-based membranes might be useful, which makes these steps less important or even redundant. Heat supply and phase contacting of the liquid LOHC and catalyst is also crucial for the process. Within the contribution, the first results from a coupled microstructured system—consisting of a radial flow reactor unit and membrane separation unit—are shown. In a first step, the 5 µm thick PdAg-membrane was characterized and a high Sieverts exponent of 0.9 was determined, indicating adsorption/desorption driven permeation. It can be demonstrated that hydrogen is first released with high catalyst-related productivity in the reactor system and afterwards separated and purified. Within the framework of limited analytics, we found that by using a Pd-based membrane, a quality of 5.0 (99.999% purity) or higher can be achieved. Furthermore, it was found that after only 8 hours, the membrane can lose up to 30% of its performance when exposed to the slightly contaminated product gas from the dehydrogenation process. However, the separation efficiency can almost completely be restored by the treatment with pure hydrogen. MDPI 2020-01-08 /pmc/articles/PMC7014189/ /pubmed/31936293 http://dx.doi.org/10.3390/ma13020277 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wunsch, Alexander
Berg, Tatjana
Pfeifer, Peter
Hydrogen Production from the LOHC Perhydro-Dibenzyl-Toluene and Purification Using a 5 µm PdAg-Membrane in a Coupled Microstructured System
title Hydrogen Production from the LOHC Perhydro-Dibenzyl-Toluene and Purification Using a 5 µm PdAg-Membrane in a Coupled Microstructured System
title_full Hydrogen Production from the LOHC Perhydro-Dibenzyl-Toluene and Purification Using a 5 µm PdAg-Membrane in a Coupled Microstructured System
title_fullStr Hydrogen Production from the LOHC Perhydro-Dibenzyl-Toluene and Purification Using a 5 µm PdAg-Membrane in a Coupled Microstructured System
title_full_unstemmed Hydrogen Production from the LOHC Perhydro-Dibenzyl-Toluene and Purification Using a 5 µm PdAg-Membrane in a Coupled Microstructured System
title_short Hydrogen Production from the LOHC Perhydro-Dibenzyl-Toluene and Purification Using a 5 µm PdAg-Membrane in a Coupled Microstructured System
title_sort hydrogen production from the lohc perhydro-dibenzyl-toluene and purification using a 5 µm pdag-membrane in a coupled microstructured system
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014189/
https://www.ncbi.nlm.nih.gov/pubmed/31936293
http://dx.doi.org/10.3390/ma13020277
work_keys_str_mv AT wunschalexander hydrogenproductionfromthelohcperhydrodibenzyltolueneandpurificationusinga5μmpdagmembraneinacoupledmicrostructuredsystem
AT bergtatjana hydrogenproductionfromthelohcperhydrodibenzyltolueneandpurificationusinga5μmpdagmembraneinacoupledmicrostructuredsystem
AT pfeiferpeter hydrogenproductionfromthelohcperhydrodibenzyltolueneandpurificationusinga5μmpdagmembraneinacoupledmicrostructuredsystem