Cargando…
Evaluation of Recent Advanced Soft Computing Techniques for Gully Erosion Susceptibility Mapping: A Comparative Study
Gully erosion is a problem; therefore, it must be predicted using highly accurate predictive models to avoid losses caused by gully development and to guarantee sustainable development. This research investigates the predictive performance of seven multiple-criteria decision-making (MCDM), statistic...
Autores principales: | Arabameri, Alireza, Blaschke, Thomas, Pradhan, Biswajeet, Pourghasemi, Hamid Reza, Tiefenbacher, John P., Bui, Dieu Tien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014250/ https://www.ncbi.nlm.nih.gov/pubmed/31936038 http://dx.doi.org/10.3390/s20020335 |
Ejemplares similares
-
Machine Learning-Based Gully Erosion Susceptibility Mapping: A Case Study of Eastern India
por: Saha, Sunil, et al.
Publicado: (2020) -
A multi-hazard map-based flooding, gully erosion, forest fires, and earthquakes in Iran
por: Pouyan, Soheila, et al.
Publicado: (2021) -
A Novel Ensemble Artificial Intelligence Approach for Gully Erosion Mapping in a Semi-Arid Watershed (Iran)
por: Tien Bui, Dieu, et al.
Publicado: (2019) -
Credal decision tree based novel ensemble models for spatial assessment of gully erosion and sustainable management
por: Arabameri, Alireza, et al.
Publicado: (2021) -
Assessing and mapping multi-hazard risk susceptibility using a machine learning technique
por: Pourghasemi, Hamid Reza, et al.
Publicado: (2020)