Cargando…
City-Wide Traffic Flow Forecasting Using a Deep Convolutional Neural Network
City-wide traffic flow forecasting is a significant function of the Intelligent Transport System (ITS), which plays an important role in city traffic management and public travel safety. However, this remains a very challenging task that is affected by many complex factors, such as road network dist...
Autores principales: | Sun, Shangyu, Wu, Huayi, Xiang, Longgang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014408/ https://www.ncbi.nlm.nih.gov/pubmed/31940830 http://dx.doi.org/10.3390/s20020421 |
Ejemplares similares
-
Forecasting short-term data center network traffic load with convolutional neural networks
por: Mozo, Alberto, et al.
Publicado: (2018) -
Spatial-temporal hypergraph convolutional network for traffic forecasting
por: Zhao, Zhenzhen, et al.
Publicado: (2023) -
VisNet: Deep Convolutional Neural Networks for Forecasting Atmospheric Visibility
por: Palvanov, Akmaljon, et al.
Publicado: (2019) -
Hourly forecasting of traffic flow rates using spatial temporal graph neural networks
por: Belt, Eline A., et al.
Publicado: (2023) -
Attention-Based Spatial–Temporal Convolution Gated Recurrent Unit for Traffic Flow Forecasting
por: Zhang, Qingyong, et al.
Publicado: (2023)