Cargando…

Effects of Si/C Ratio on the Phase Composition of Si-C-N Powders Synthesized by Carbonitriding

Si-C-N based materials possess interesting properties such as high hardness and oxidation resistance. The compacts of silicon and cornstarch with different Si/C ratios were subjected to carbonitriding at 1350–1550 °C. Reaction products were characterized by X-ray powder diffractometer (XRD), X-ray p...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Cong, Qu, Ling, Yuan, Wenjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014444/
https://www.ncbi.nlm.nih.gov/pubmed/31940883
http://dx.doi.org/10.3390/ma13020346
Descripción
Sumario:Si-C-N based materials possess interesting properties such as high hardness and oxidation resistance. The compacts of silicon and cornstarch with different Si/C ratios were subjected to carbonitriding at 1350–1550 °C. Reaction products were characterized by X-ray powder diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscope (TEM). The effects of Si/C ratio on the phase composition of Si-C-N powders were investigated. The results revealed that the Si/C ratio played a crucial role on the formation of crystalline silicon carbonitride (SiCN) and the phase composition of Si-C-N powders. It was demonstrated that liquid silicon is an important medium and reaction site for the introduction of nitrogen, so the Si content in reactants has affected the N content in the product. On the other hand, carbon participates in the carbonization of Si(3)N(4) and the formation of SiC. The contents of C-N bond and SiCN in the products are carbon content-dependent. Combining the above two aspects, the maximum yield of SiCN can be achieved with the Si/C ratio of 1:1 to 1:1.5.