Cargando…

An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone

In this paper, we present the recent progress in the experimental studies of the electrical conductivity of dominant nominally anhydrous minerals in the upper mantle and mantle transition zone of Earth, namely, olivine, pyroxene, garnet, wadsleyite and ringwoodite. The main influence factors, such a...

Descripción completa

Detalles Bibliográficos
Autores principales: Dai, Lidong, Hu, Haiying, Jiang, Jianjun, Sun, Wenqing, Li, Heping, Wang, Mengqi, Vallianatos, Filippos, Saltas, Vassilios
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014445/
https://www.ncbi.nlm.nih.gov/pubmed/31952310
http://dx.doi.org/10.3390/ma13020408
_version_ 1783496631996383232
author Dai, Lidong
Hu, Haiying
Jiang, Jianjun
Sun, Wenqing
Li, Heping
Wang, Mengqi
Vallianatos, Filippos
Saltas, Vassilios
author_facet Dai, Lidong
Hu, Haiying
Jiang, Jianjun
Sun, Wenqing
Li, Heping
Wang, Mengqi
Vallianatos, Filippos
Saltas, Vassilios
author_sort Dai, Lidong
collection PubMed
description In this paper, we present the recent progress in the experimental studies of the electrical conductivity of dominant nominally anhydrous minerals in the upper mantle and mantle transition zone of Earth, namely, olivine, pyroxene, garnet, wadsleyite and ringwoodite. The main influence factors, such as temperature, pressure, water content, oxygen fugacity, and anisotropy are discussed in detail. The dominant conduction mechanisms of Fe-bearing silicate minerals involve the iron-related small polaron with a relatively large activation enthalpy and the hydrogen-related defect with lower activation enthalpy. Specifically, we mainly focus on the variation of oxygen fugacity on the electrical conductivity of anhydrous and hydrous mantle minerals, which exhibit clearly different charge transport processes. In representative temperature and pressure environments, the hydrogen of nominally anhydrous minerals can tremendously enhance the electrical conductivity of the upper mantle and transition zone, and the influence of trace structural water (or hydrogen) is substantial. In combination with the geophysical data of magnetotelluric surveys, the laboratory-based electrical conductivity measurements can provide significant constraints to the water distribution in Earth’s interior.
format Online
Article
Text
id pubmed-7014445
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70144452020-03-09 An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone Dai, Lidong Hu, Haiying Jiang, Jianjun Sun, Wenqing Li, Heping Wang, Mengqi Vallianatos, Filippos Saltas, Vassilios Materials (Basel) Review In this paper, we present the recent progress in the experimental studies of the electrical conductivity of dominant nominally anhydrous minerals in the upper mantle and mantle transition zone of Earth, namely, olivine, pyroxene, garnet, wadsleyite and ringwoodite. The main influence factors, such as temperature, pressure, water content, oxygen fugacity, and anisotropy are discussed in detail. The dominant conduction mechanisms of Fe-bearing silicate minerals involve the iron-related small polaron with a relatively large activation enthalpy and the hydrogen-related defect with lower activation enthalpy. Specifically, we mainly focus on the variation of oxygen fugacity on the electrical conductivity of anhydrous and hydrous mantle minerals, which exhibit clearly different charge transport processes. In representative temperature and pressure environments, the hydrogen of nominally anhydrous minerals can tremendously enhance the electrical conductivity of the upper mantle and transition zone, and the influence of trace structural water (or hydrogen) is substantial. In combination with the geophysical data of magnetotelluric surveys, the laboratory-based electrical conductivity measurements can provide significant constraints to the water distribution in Earth’s interior. MDPI 2020-01-15 /pmc/articles/PMC7014445/ /pubmed/31952310 http://dx.doi.org/10.3390/ma13020408 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Dai, Lidong
Hu, Haiying
Jiang, Jianjun
Sun, Wenqing
Li, Heping
Wang, Mengqi
Vallianatos, Filippos
Saltas, Vassilios
An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone
title An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone
title_full An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone
title_fullStr An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone
title_full_unstemmed An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone
title_short An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone
title_sort overview of the experimental studies on the electrical conductivity of major minerals in the upper mantle and transition zone
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014445/
https://www.ncbi.nlm.nih.gov/pubmed/31952310
http://dx.doi.org/10.3390/ma13020408
work_keys_str_mv AT dailidong anoverviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone
AT huhaiying anoverviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone
AT jiangjianjun anoverviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone
AT sunwenqing anoverviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone
AT liheping anoverviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone
AT wangmengqi anoverviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone
AT vallianatosfilippos anoverviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone
AT saltasvassilios anoverviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone
AT dailidong overviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone
AT huhaiying overviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone
AT jiangjianjun overviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone
AT sunwenqing overviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone
AT liheping overviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone
AT wangmengqi overviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone
AT vallianatosfilippos overviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone
AT saltasvassilios overviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone