Cargando…
An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone
In this paper, we present the recent progress in the experimental studies of the electrical conductivity of dominant nominally anhydrous minerals in the upper mantle and mantle transition zone of Earth, namely, olivine, pyroxene, garnet, wadsleyite and ringwoodite. The main influence factors, such a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014445/ https://www.ncbi.nlm.nih.gov/pubmed/31952310 http://dx.doi.org/10.3390/ma13020408 |
_version_ | 1783496631996383232 |
---|---|
author | Dai, Lidong Hu, Haiying Jiang, Jianjun Sun, Wenqing Li, Heping Wang, Mengqi Vallianatos, Filippos Saltas, Vassilios |
author_facet | Dai, Lidong Hu, Haiying Jiang, Jianjun Sun, Wenqing Li, Heping Wang, Mengqi Vallianatos, Filippos Saltas, Vassilios |
author_sort | Dai, Lidong |
collection | PubMed |
description | In this paper, we present the recent progress in the experimental studies of the electrical conductivity of dominant nominally anhydrous minerals in the upper mantle and mantle transition zone of Earth, namely, olivine, pyroxene, garnet, wadsleyite and ringwoodite. The main influence factors, such as temperature, pressure, water content, oxygen fugacity, and anisotropy are discussed in detail. The dominant conduction mechanisms of Fe-bearing silicate minerals involve the iron-related small polaron with a relatively large activation enthalpy and the hydrogen-related defect with lower activation enthalpy. Specifically, we mainly focus on the variation of oxygen fugacity on the electrical conductivity of anhydrous and hydrous mantle minerals, which exhibit clearly different charge transport processes. In representative temperature and pressure environments, the hydrogen of nominally anhydrous minerals can tremendously enhance the electrical conductivity of the upper mantle and transition zone, and the influence of trace structural water (or hydrogen) is substantial. In combination with the geophysical data of magnetotelluric surveys, the laboratory-based electrical conductivity measurements can provide significant constraints to the water distribution in Earth’s interior. |
format | Online Article Text |
id | pubmed-7014445 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70144452020-03-09 An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone Dai, Lidong Hu, Haiying Jiang, Jianjun Sun, Wenqing Li, Heping Wang, Mengqi Vallianatos, Filippos Saltas, Vassilios Materials (Basel) Review In this paper, we present the recent progress in the experimental studies of the electrical conductivity of dominant nominally anhydrous minerals in the upper mantle and mantle transition zone of Earth, namely, olivine, pyroxene, garnet, wadsleyite and ringwoodite. The main influence factors, such as temperature, pressure, water content, oxygen fugacity, and anisotropy are discussed in detail. The dominant conduction mechanisms of Fe-bearing silicate minerals involve the iron-related small polaron with a relatively large activation enthalpy and the hydrogen-related defect with lower activation enthalpy. Specifically, we mainly focus on the variation of oxygen fugacity on the electrical conductivity of anhydrous and hydrous mantle minerals, which exhibit clearly different charge transport processes. In representative temperature and pressure environments, the hydrogen of nominally anhydrous minerals can tremendously enhance the electrical conductivity of the upper mantle and transition zone, and the influence of trace structural water (or hydrogen) is substantial. In combination with the geophysical data of magnetotelluric surveys, the laboratory-based electrical conductivity measurements can provide significant constraints to the water distribution in Earth’s interior. MDPI 2020-01-15 /pmc/articles/PMC7014445/ /pubmed/31952310 http://dx.doi.org/10.3390/ma13020408 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Dai, Lidong Hu, Haiying Jiang, Jianjun Sun, Wenqing Li, Heping Wang, Mengqi Vallianatos, Filippos Saltas, Vassilios An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone |
title | An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone |
title_full | An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone |
title_fullStr | An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone |
title_full_unstemmed | An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone |
title_short | An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone |
title_sort | overview of the experimental studies on the electrical conductivity of major minerals in the upper mantle and transition zone |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014445/ https://www.ncbi.nlm.nih.gov/pubmed/31952310 http://dx.doi.org/10.3390/ma13020408 |
work_keys_str_mv | AT dailidong anoverviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone AT huhaiying anoverviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone AT jiangjianjun anoverviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone AT sunwenqing anoverviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone AT liheping anoverviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone AT wangmengqi anoverviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone AT vallianatosfilippos anoverviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone AT saltasvassilios anoverviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone AT dailidong overviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone AT huhaiying overviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone AT jiangjianjun overviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone AT sunwenqing overviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone AT liheping overviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone AT wangmengqi overviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone AT vallianatosfilippos overviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone AT saltasvassilios overviewoftheexperimentalstudiesontheelectricalconductivityofmajormineralsintheuppermantleandtransitionzone |