Cargando…
Self-Sensing Carbon Nanotube Composites Exposed to Glass Transition Temperature
This paper reported the effect of high temperature on the electro-mechanical behavior of carbon nanotube (CNT) reinforced epoxy composites. CNT/epoxy composites were fabricated by dispersing CNTs in the epoxy matrix using a solution casting method. Electrical conductivity measurements obtained for t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014453/ https://www.ncbi.nlm.nih.gov/pubmed/31936072 http://dx.doi.org/10.3390/ma13020259 |
Sumario: | This paper reported the effect of high temperature on the electro-mechanical behavior of carbon nanotube (CNT) reinforced epoxy composites. CNT/epoxy composites were fabricated by dispersing CNTs in the epoxy matrix using a solution casting method. Electrical conductivity measurements obtained for the CNT/epoxy composites indicated a steadily increasing directly proportional relationship with CNT concentration with a percolation threshold at 0.25 wt %, reaching a maximum of up to 0.01 S/m at 2.00 wt % CNTs. The electro-mechanical behavior of CNT/epoxy composites were investigated at a room temperature under the static and cyclic compressive loadings, resulting that the change in resistance of CNT/epoxy composites was reduced as increasing CNT concentration with good repeatability. This is due to well-networked CNTs conducting pathways created within the solid epoxy matrix observed by scanning electron microscopy. Temperature significantly affects the electro-mechanical behavior of CNT/epoxy composites. In particular, the electro-mechanical behavior of CNT/epoxy composites below the glass transition temperature showed the similar trend with those at room temperature, whereas the electro-mechanical behavior of CNT/epoxy composites above the glass transition temperature showed an opposite change in resistance with poor repeatability due to unstable CNT network in epoxy matrix. |
---|