Cargando…
A Method to Estimate Horse Speed per Stride from One IMU with a Machine Learning Method
With the emergence of numerical sensors in sports, there is an increasing need for tools and methods to compute objective motion parameters with great accuracy. In particular, inertial measurement units are increasingly used in the clinical domain or the sports one to estimate spatiotemporal paramet...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014525/ https://www.ncbi.nlm.nih.gov/pubmed/31963422 http://dx.doi.org/10.3390/s20020518 |
_version_ | 1783496651053203456 |
---|---|
author | Schmutz, Amandine Chèze, Laurence Jacques, Julien Martin, Pauline |
author_facet | Schmutz, Amandine Chèze, Laurence Jacques, Julien Martin, Pauline |
author_sort | Schmutz, Amandine |
collection | PubMed |
description | With the emergence of numerical sensors in sports, there is an increasing need for tools and methods to compute objective motion parameters with great accuracy. In particular, inertial measurement units are increasingly used in the clinical domain or the sports one to estimate spatiotemporal parameters. The purpose of the present study was to develop a model that can be included in a smart device in order to estimate the horse speed per stride from accelerometric and gyroscopic data without the use of a global positioning system, enabling the use of such a tool in both indoor and outdoor conditions. The accuracy of two speed calculation methods was compared: one signal based and one machine learning model. Those two methods allowed the calculation of speed from accelerometric and gyroscopic data without any other external input. For this purpose, data were collected under various speeds on straight lines and curved paths. Two reference systems were used to measure the speed in order to have a reference speed value to compare each tested model and estimate their accuracy. Those models were compared according to three different criteria: the percentage of error above 0.6 m/s, the RMSE, and the Bland and Altman limit of agreement. The machine learning method outperformed its competitor by giving the lowest value for all three criteria. The main contribution of this work is that it is the first method that gives an accurate speed per stride for horses without being coupled with a global positioning system or a magnetometer. No similar study performed on horses exists to compare our work with, so the presented model is compared to existing models for human walking. Moreover, this tool can be extended to other equestrian sports, as well as bipedal locomotion as long as consistent data are provided to train the machine learning model. The machine learning model’s accurate results can be explained by the large database built to train the model and the innovative way of slicing stride data before using them as an input for the model. |
format | Online Article Text |
id | pubmed-7014525 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70145252020-03-09 A Method to Estimate Horse Speed per Stride from One IMU with a Machine Learning Method Schmutz, Amandine Chèze, Laurence Jacques, Julien Martin, Pauline Sensors (Basel) Article With the emergence of numerical sensors in sports, there is an increasing need for tools and methods to compute objective motion parameters with great accuracy. In particular, inertial measurement units are increasingly used in the clinical domain or the sports one to estimate spatiotemporal parameters. The purpose of the present study was to develop a model that can be included in a smart device in order to estimate the horse speed per stride from accelerometric and gyroscopic data without the use of a global positioning system, enabling the use of such a tool in both indoor and outdoor conditions. The accuracy of two speed calculation methods was compared: one signal based and one machine learning model. Those two methods allowed the calculation of speed from accelerometric and gyroscopic data without any other external input. For this purpose, data were collected under various speeds on straight lines and curved paths. Two reference systems were used to measure the speed in order to have a reference speed value to compare each tested model and estimate their accuracy. Those models were compared according to three different criteria: the percentage of error above 0.6 m/s, the RMSE, and the Bland and Altman limit of agreement. The machine learning method outperformed its competitor by giving the lowest value for all three criteria. The main contribution of this work is that it is the first method that gives an accurate speed per stride for horses without being coupled with a global positioning system or a magnetometer. No similar study performed on horses exists to compare our work with, so the presented model is compared to existing models for human walking. Moreover, this tool can be extended to other equestrian sports, as well as bipedal locomotion as long as consistent data are provided to train the machine learning model. The machine learning model’s accurate results can be explained by the large database built to train the model and the innovative way of slicing stride data before using them as an input for the model. MDPI 2020-01-17 /pmc/articles/PMC7014525/ /pubmed/31963422 http://dx.doi.org/10.3390/s20020518 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Schmutz, Amandine Chèze, Laurence Jacques, Julien Martin, Pauline A Method to Estimate Horse Speed per Stride from One IMU with a Machine Learning Method |
title | A Method to Estimate Horse Speed per Stride from One IMU with a Machine Learning Method |
title_full | A Method to Estimate Horse Speed per Stride from One IMU with a Machine Learning Method |
title_fullStr | A Method to Estimate Horse Speed per Stride from One IMU with a Machine Learning Method |
title_full_unstemmed | A Method to Estimate Horse Speed per Stride from One IMU with a Machine Learning Method |
title_short | A Method to Estimate Horse Speed per Stride from One IMU with a Machine Learning Method |
title_sort | method to estimate horse speed per stride from one imu with a machine learning method |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014525/ https://www.ncbi.nlm.nih.gov/pubmed/31963422 http://dx.doi.org/10.3390/s20020518 |
work_keys_str_mv | AT schmutzamandine amethodtoestimatehorsespeedperstridefromoneimuwithamachinelearningmethod AT chezelaurence amethodtoestimatehorsespeedperstridefromoneimuwithamachinelearningmethod AT jacquesjulien amethodtoestimatehorsespeedperstridefromoneimuwithamachinelearningmethod AT martinpauline amethodtoestimatehorsespeedperstridefromoneimuwithamachinelearningmethod AT schmutzamandine methodtoestimatehorsespeedperstridefromoneimuwithamachinelearningmethod AT chezelaurence methodtoestimatehorsespeedperstridefromoneimuwithamachinelearningmethod AT jacquesjulien methodtoestimatehorsespeedperstridefromoneimuwithamachinelearningmethod AT martinpauline methodtoestimatehorsespeedperstridefromoneimuwithamachinelearningmethod |