Cargando…
Applying Fully Convolutional Architectures for Semantic Segmentation of a Single Tree Species in Urban Environment on High Resolution UAV Optical Imagery
This study proposes and evaluates five deep fully convolutional networks (FCNs) for the semantic segmentation of a single tree species: SegNet, U-Net, FC-DenseNet, and two DeepLabv3+ variants. The performance of the FCN designs is evaluated experimentally in terms of classification accuracy and comp...
Autores principales: | Lobo Torres, Daliana, Queiroz Feitosa, Raul, Nigri Happ, Patrick, Elena Cué La Rosa, Laura, Marcato Junior, José, Martins, José, Olã Bressan, Patrik, Gonçalves, Wesley Nunes, Liesenberg, Veraldo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014541/ https://www.ncbi.nlm.nih.gov/pubmed/31968589 http://dx.doi.org/10.3390/s20020563 |
Ejemplares similares
-
Assessment of CNN-Based Methods for Individual Tree Detection on Images Captured by RGB Cameras Attached to UAVs
por: dos Santos, Anderson Aparecido, et al.
Publicado: (2019) -
A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery
por: Huang, Huasheng, et al.
Publicado: (2018) -
Accurate Weed Mapping and Prescription Map Generation Based on Fully Convolutional Networks Using UAV Imagery
por: Huang, Huasheng, et al.
Publicado: (2018) -
Deep Learning Applied to Phenotyping of Biomass in Forages with UAV-Based RGB Imagery
por: Castro, Wellington, et al.
Publicado: (2020) -
A Semantic Labeling Approach for Accurate Weed Mapping of High Resolution UAV Imagery
por: Huang, Huasheng, et al.
Publicado: (2018)