Cargando…
A comprehensive tool for creating and evaluating privacy-preserving biomedical prediction models
BACKGROUND: Modern data driven medical research promises to provide new insights into the development and course of disease and to enable novel methods of clinical decision support. To realize this, machine learning models can be trained to make predictions from clinical, paraclinical and biomolecul...
Autores principales: | Eicher, Johanna, Bild, Raffael, Spengler, Helmut, Kuhn, Klaus A., Prasser, Fabian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014648/ https://www.ncbi.nlm.nih.gov/pubmed/32046701 http://dx.doi.org/10.1186/s12911-020-1041-3 |
Ejemplares similares
-
A scalable software solution for anonymizing high-dimensional biomedical data
por: Meurers, Thierry, et al.
Publicado: (2021) -
BBMRI catalogue
por: Kuhn, Klaus, et al.
Publicado: (2015) -
A privacy-preserving distributed filtering framework for NLP artifacts
por: Sadat, Md Nazmus, et al.
Publicado: (2019) -
EasySMPC: a simple but powerful no-code tool for practical secure multiparty computation
por: Wirth, Felix Nikolaus, et al.
Publicado: (2022) -
Privacy-preserving data sharing infrastructures for medical research: systematization and comparison
por: Wirth, Felix Nikolaus, et al.
Publicado: (2021)